66 research outputs found

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    Tissue sparing surgery in knee reconstruction: unicompartmental (UKA), patellofemoral (PFA), UKA + PFA, bi-unicompartmental (Bi-UKA) arthroplasties

    Get PDF
    Recently mini-invasive joint replacement has become one of the hottest topics in the orthopaedic world. However, these terms have been improperly misunderstood as a “key-hole” surgery where traditional components are implanted with shorter surgical approaches, with few benefits and several possible dangers. Small implants as unicompartmental knee prostheses, patellofemoral prostheses and bi-unicompartmental knee prostheses might represent real less invasive procedures: Tissue sparing surgery, the Italian way to minimally invasive surgery (MIS). According to their experience the authors go through this real tissue sparing surgery not limited only to a small incision, but where the surgeons can respect the physiological joint biomechanics

    Trans-Species Polymorphism and Selection in the MHC Class II DRA Genes of Domestic Sheep

    Get PDF
    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the induction of protective immunity

    Diet and asthma: looking back, moving forward

    Get PDF
    Asthma is an increasing global health burden, especially in the western world. Public health interventions are sought to lessen its prevalence or severity, and diet and nutrition have been identified as potential factors. With rapid changes in diet being one of the hallmarks of westernization, nutrition may play a key role in affecting the complex genetics and developmental pathophysiology of asthma. The present review investigates hypotheses about hygiene, antioxidants, lipids and other nutrients, food types and dietary patterns, breastfeeding, probiotics and intestinal microbiota, vitamin D, maternal diet, and genetics. Early hypotheses analyzed population level trends and focused on major dietary factors such as antioxidants and lipids. More recently, larger dietary patterns beyond individual nutrients have been investigated such as obesity, fast foods, and the Mediterranean diet. Despite some promising hypotheses and findings, there has been no conclusive evidence about the role of specific nutrients, food types, or dietary patterns past early childhood on asthma prevalence. However, diet has been linked to the development of the fetus and child. Breastfeeding provides immunological protection when the infant's immune system is immature and a modest protective effect against wheeze in early childhood. Moreover, maternal diet may be a significant factor in the development of the fetal airway and immune system. As asthma is a complex disease of gene-environment interactions, maternal diet may play an epigenetic role in sensitizing fetal airways to respond abnormally to environmental insults. Recent hypotheses show promise in a biological approach in which the effects of dietary factors on individual physiology and immunology are analyzed before expansion into larger population studies. Thus, collaboration is required by various groups in studying this enigma from epidemiologists to geneticists to immunologists. It is now apparent that this multidisciplinary approach is required to move forward and understand the complexity of the interaction of dietary factors and asthma

    Estimating Contact Process Saturation in Sylvatic Transmission of Trypanosoma cruzi in the United States

    Get PDF
    Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF
    corecore