12,673 research outputs found

    Exobiology issues and experiments at a Mars base

    Get PDF
    Research in Exobiology, the study of the origin, evolution, and distribution of life in the universe, may be a major component of the science activities at a Mars Base. Exobiology activities would include: continuing the search for life on Mars; searching for evidence for ancient life from a warmer Martian past; research into the chemistry of the biogenic elements and their compounds; and other related activities. Mars provides an opportunity in Exobiology, both for immediate study and for long range and possibly large scale experimentation in planetary biology

    Mars: A reassessment of its interest to biology

    Get PDF
    Of all the planets in the solar system, Mars is certainly the one that has inspired the most speculation concerning extraterrestrial life. Observers had long ago noticed that Mars exhibits changes in its polar caps and alterations in its surface coloration that parallel seasonal changes on Earth. The fascination with Mars and the possibility of life on Mars continued into the spacecraft era and was directly expressed in the Viking Missions. These highly successful missions had the search for life on Mars as one of their principal goals. A review of Viking Missions experiments is presented. Results of these investigations are summarized. While the Viking Missions returned a negative answer to the question of life on Mars, they also showed that many years ago Mars was a very different place and enjoyed conditions that may have been conducive to the origin of life - life that may have long since become extinct. Evidence for the existence of water on Mars in the past is presented. Techniques used to study early life on Earth, which may also be used for similar studies on Mars, are described

    Exobiology and life science

    Get PDF
    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) biogenic elements in the interstellar medium; (2) organic material in the solar nebula; (3) volatiles in comets and icy planetesimals; (4) pre-biotic atmospheric chemistry; (5) analysis of cosmic dust particles; and (6) microbial exposure. The required capabilities and desired hardware for the facility are detailed

    Subsurface microbial habitats on Mars

    Get PDF
    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive

    As-built design specification for Boundary Detection And Registration Program (BDARP1)

    Get PDF
    There are no author-identified significant results in this report

    The GZK Bound and Strong Neutrino-Nucleon Interactions above 10^19eV: a Progress Report

    Get PDF
    Cosmic ray events above 10^19 eV have posed a fundamental problem for more than thirty years. Recent measurements indicate that these events do not show the features predicted by the GZK bound. The events may, in addition, display angular correlations with point sources. If these observations are confirmed for point sources further than 50 - 100 Mpc, then strong interactions for the neutrino are indicated. Recent work on extra spatial dimensions provides a context for massive spin-2 exchanges capable of generating cross sections in the 1 - 100 mb range, as indicated by data. Applications of extra-dimension physics are controversial, and we comment on several contentious issues.Comment: 4 pages, 1 figure; talk by JPR at 7th Conference on the Intersections of Particle and Nuclear Physics, Quebec City, May, 200

    Conceptual designs for in situ analysis of Mars soil

    Get PDF
    A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars
    corecore