6 research outputs found

    Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional agriculture is increasingly based on highly specialized, highly productive farms. It has been suggested that 1) this specialization leads to farms that lack resilience to changing market and environmental conditions; and 2) that by decreasing agricultural diversity, the resilience of the farming system also decreases.</p> <p>Methods</p> <p>We used agricultural gross margin (GM) forecasts from 1966 to 2010 and remote sensing data from agricultural landscapes in the lowland UK, in conjunction with modern portfolio theory, to test the hypothesis that decreasing land-use diversity results in landscapes that provide higher, but more volatile, economic returns. We considered the role of spatial scale on the expected levels of volatility and resilience of agricultural returns.</p> <p>Results</p> <p>We found that: 1) there was a strong linear trade-off between expected GMs and the expected volatility of those GMs in real lowland agricultural landscapes in the UK; 2) land-use diversification was negatively correlated with expected GMs from agriculture, and positively correlated with decreasing expected volatility in GMs; 3) the resilience of agricultural returns was positively correlated with the diversity of agricultural land use, and the resilience of agricultural returns rose quickly with increased land-holding size at small spatial extents, but this effect diminished after landholdings reached 12,000 hectares.</p> <p>Conclusions</p> <p>Land-use diversity may have an important role in ensuring resilient agricultural returns in the face of uncertain market and environmental conditions, and land-holding size plays a pivotal role in determining the relationships between resilience and returns at a landscape scale. Creating finer-grained land-use patterns based on pre-existing local land uses may increase the resilience of individual farms, while maintaining aggregate yield across landscapes.</p

    Older Human B Cells and Antibodies

    No full text
    B cells have a number of different roles in the immune response. Their excellent antigen presentation potential can contribute to the activation of other cells of the immune system, and evidence is emerging that specialized subsets of these cells, that may be increased with age, can influence the cell-mediated immune system in antitumor responses. They can also regulate immune responses, to avoid autoreactivity and excessive inflammation. Deficiencies in regulatory B cells may be beneficial in cancer but will only exacerbate the inflammatory environment that is a hallmark of aging. The B cell role as antibody producers is particularly important, since antibodies perform numerous different functions in different environments. Although studying tissue responses in humans is not as easy as in mice, we do know that certain classes of antibodies are more suited to protecting the mucosal tissues (IgA) or responding to T-independent bacterial polysaccharide antigens (IgG2) so we can make some inference with respect to tissue-specific immunity from a study of peripheral blood. We can also make inferences about changes in B cell development with age by looking at the repertoire of different B cell populations to see how age affects the selection events that would normally occur to avoid autoreactivity, or increase specificity, to antigen
    corecore