218 research outputs found

    Vaccine responses in ageing and chronic viral infection

    Get PDF
    Over the last few decades, changing population demographics have shown that there are a growing number of individuals living past the age of 60. With this expanding older population comes an increase in individuals that are more susceptible to chronic illness and disease. An important part of maintaining health in this population is through prophylactic vaccination, however, there is growing evidence that vaccines may be less effective in the elderly. Furthermore, with the success of anti-viral therapies, chronic infections such as HIV are becoming increasingly prevalent in older populations and present a relatively unstudied population with respect to the efficacy of vaccination. Here we will examine the evidence for age-associated reduction in antibody and cellular responsiveness to a variety of common vaccines and investigate the underlying causes attributed to this phenomenon, such as inflammation and senescence. We will also discuss the impact of chronic viral infections on immune responses in both young and elderly patients, particularly those living with HIV, and how this affects vaccinations in these populations

    Licenced doses of approved COVID-19 vaccines may not be optimal: A review of the early-phase, dose-finding trials

    Get PDF
    Although over 13 billion COVID-19 vaccine doses have been administered globally, the issue of whether the optimal doses are being used has received little attention. To address this question we reviewed the reports of early-phase dose-finding trials of the nine COVID-19 vaccines approved by World Health Organization, extracting information on study design and findings on reactogenicity and early humoral immune response. The number of different doses evaluated for each vaccine varied widely (range 1-7), as did the number of subjects studied per dose (range 15-190). As expected, the frequency and severity of adverse reactions generally increased at higher doses, although most were clinically tolerable. Higher doses also tended to elicit better immune responses, but differences between the highest dose and the second-highest dose evaluated were small, typically less than 1.6-fold for both binding antibody concentration and neutralising antibody titre. All of the trials had at least one important design limitation - few doses evaluated, large gaps between adjacent doses, or an inadequate sample size - although this is not a criticism of the study investigators, who were working under intense time pressures at the start of the epidemic. It is therefore open to question whether the single dose taken into clinical efficacy trials, and subsequently authorised by regulatory agencies, was optimal. In particular, our analysis indicates that the recommended doses for some vaccines appear to be unnecessarily high. Although reduced dosing for booster injections is an active area of research, the priming dose also merits study. We conclude by suggesting improvements in the design of future vaccine trials, for both next-generation COVID-19 vaccines and for vaccines against other pathogens

    Mutations in modified virus Ankara protein 183 render it a non-functional counterpart of B14, an inhibitor of nuclear factor κB activation

    Get PDF
    Vaccinia virus (VACV) encodes multiple proteins to evade host innate immunity, including B14, a virulence factor that binds to the inhibitor of κB kinase β (IKKβ) and blocks nuclear factor κB (NF-κB) activation. B14 shares 95 % amino acid identity with the 183 protein encoded by modified virus Ankara (MVA), an attenuated VACV strain being developed as a vaccine vector. To evaluate whether the immunogenicity of MVA might be increased by manipulation of MVA immunomodulatory proteins, the MVA counterpart of B14, protein 183, was characterized. Unlike B14, protein 183 was unstable in eukaryotic cells unless proteasome-mediated protein degradation was inhibited. Furthermore, 183 did not inhibit NF-κB activation in response to cytokine stimulation, and did not restore the virulence of VACV strain Western Reserve lacking gene B14R. The instability and non-functionality of 183 are probably explained by a deletion of 6 aa within α-helix 6 of the B14 crystal structure

    SARS-CoV-2 triggers pericyte-mediated cerebral capillary constriction

    Get PDF
    The SARS-CoV-2 receptor, ACE2, is found on pericytes, contractile cells enwrapping capillaries that regulate brain, heart and kidney blood flow. ACE2 converts vasoconstricting angiotensin II into vasodilating angiotensin-(1-7). In brain slices from hamster, which has an ACE2 sequence similar to human ACE2, angiotensin II evoked a small pericyte-mediated capillary constriction via AT1 receptors, but evoked a large constriction when the SARS-CoV-2 receptor binding domain (RBD, original Wuhan variant) was present. A mutated non-binding RBD did not potentiate constriction. A similar RBD-potentiated capillary constriction occurred in human cortical slices, and was evoked in hamster brain slices by pseudotyped virions expressing SARS-CoV-2 spike protein. This constriction reflects an RBD-induced decrease in the conversion of angiotensin II to angiotensin-(1-7) mediated by removal of ACE2 from the cell surface membrane, and was mimicked by blocking ACE2. The clinically-used drug losartan inhibited the RBD-potentiated constriction. Thus, AT1 receptor blockers could be protective in Covid-19 by preventing pericyte-mediated blood flow reductions in the brain, and perhaps the heart and kidney

    One hundred mosaic embryos transferred prospectively in a single clinic: exploring when and why they result in healthy pregnancies

    Get PDF
    Objective To investigate the parameters of mosaicism and the biological mechanisms leading to healthy pregnancies from mosaic embryo transfers. Design Prospective study. Setting IVF center and associated research laboratory. Patient(s) Fifty-nine patients. Intervention(s) Embryos underwent blastocyst-stage preimplantation genetic testing for aneuploidy by next-generation sequencing. Trophectoderm biopsies containing 20%–80% abnormal cells were deemed mosaic, and corresponding blastocysts were transferred. Mosaic embryos donated to research were examined for karyotype concordance in multiple biopsies and assessed for cell proliferation and death by immunofluorescence and computational quantitation. Main Outcome Measure(s) Chemical start of pregnancy, implantation, fetal heartbeat, and birth. Result(s) Globally, mosaic embryos showed inferior clinical outcomes compared with euploid embryos. Aneuploid cell percentage in trophectoderm biopsies did not correlate with outcomes, but type of mosaicism did, as embryos with single mosaic segmental aneuploidies fared better than all other types. Mosaic blastocysts generated from oocytes retrieved at young maternal ages (?34 years) showed better outcomes than those retrieved at older maternal ages. Mosaic embryos displayed low rates of karyotype concordance between multiple biopsies and showed significant elevation of cell proliferation and death compared with euploid embryos. Conclusion(s) After euploid embryos, mosaic embryos can be considered for transfer, prioritizing those of the single segmental mosaic type. If a patient has mosaic embryos available that were generated at different ages, preference should be given to those made at younger ages. Intrablastocyst karyotype discordance and differential cell proliferation and death might be reasons that embryos classified as mosaic can result in healthy pregnancies and babies

    A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition

    Get PDF
    The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10

    Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1

    Get PDF
    Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH
    corecore