21 research outputs found
Initiation of T cell signaling by CD45 segregation at 'close contacts'.
It has been proposed that the local segregation of kinases and the tyrosine phosphatase CD45 underpins T cell antigen receptor (TCR) triggering, but how such segregation occurs and whether it can initiate signaling is unclear. Using structural and biophysical analysis, we show that the extracellular region of CD45 is rigid and extends beyond the distance spanned by TCR-ligand complexes, implying that sites of TCR-ligand engagement would sterically exclude CD45. We also show that the formation of 'close contacts', new structures characterized by spontaneous CD45 and kinase segregation at the submicron-scale, initiates signaling even when TCR ligands are absent. Our work reveals the structural basis for, and the potent signaling effects of, local CD45 and kinase segregation. TCR ligands have the potential to heighten signaling simply by holding receptors in close contacts.The authors thank R.A. Cornall, M.L. Dustin and P.A. van der Merwe for comments on the manuscript and S. Ikemizu for useful discussions about the structure. We also thank W. Lu and T. Walter for technical support with protein expression and crystallization, the staff at Diamond Light Source beamlines I02, I03 and I04-1 (proposal mx10627) and European Synchrotron Radiation Facility beamlines ID23EH1 and ID23EH2 for assistance at the synchrotrons, G. Sutton for assistance with MALS experiments, and M. Fritzsche for advice on the calcium analysis. This work was funded by the Wellcome Trust (098274/Z/12/Z to S.J.D.; 090532/Z/09/Z to R.J.C.G.; 090708/Z/09/Z to D.K.), the UK Medical Research Council (G0700232 to A.R.A.), the Royal Society (UF120277 to S.F.L.) and Cancer Research UK (C20724/A14414 to C.S.; C375/A10976 to E.Y.J.). The Oxford Division of Structural Biology is part of the Wellcome Trust Centre for Human Genetics, Wellcome Trust Core Award Grant Number 090532/Z/09/Z. We acknowledge financial support from Instruct, an ESFRI Landmark Project. The OPIC electron microscopy facility was funded by a Wellcome Trust JIF award (060208/Z/00/Z).This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/ni.339
A new framing approach in guideline development to manage different sources of knowledge
Rationale: Contemporary guideline methodology struggles to consider context and information from different sources of knowledge besides quantitative research. Return to work programmes involve multiple components and stakeholders. If the guideline is to be relevant and practical for a complex intervention such as return to work, it is essential to use broad sources of knowledge. Aims and Objective: This paper reports on a new method in guideline development to manage different sources of knowledge. Methods: The method used framing for the return-to-work guidance within the Clinical Practice Guidelines for the Management of Rotator Cuff Syndrome in the Workplace. The development involved was a multi-disciplinary working party of experts including consumers. The researchers considered a broad range of research, expert (practice and experience) knowledge, the individual's and workplace contexts, and used framing with the International Classification of Functioning, Disability and Health. Following a systematic database search on four clinical questions, there were seven stages of knowledge management to extract, unpack, map and pack information to the ICF domains framework. Companion graded recommendations were developed. Results: The results include practical examples, user and consumer guides, flow charts and six graded or consensus recommendations on best practice for return to work intervention. Conclusions: Our findings suggest using framing in guideline methodology with internationally accepted frames such as the ICF is a reliable and transparent framework to manage different sources of knowledge. Future research might examine other examples and methods for managing complexity and using different sources of knowledge in guideline development
Recommended from our members
Single-molecule imaging reveals that small amyloid-β1-42 oligomers interact with the cellular prion protein (PrP(C)).
Oligomers of the amyloid-β peptide (Aβ) play a central role in the pathogenesis of Alzheimer's disease and have been suggested to induce neurotoxicity by binding to a plethora of cell-surface receptors. However, the heterogeneous mixtures of oligomers of varying sizes and conformations formed by Aβ42 have obscured the nature of the oligomeric species that bind to a given receptor. Here, we have used single-molecule imaging to characterize Aβ42 oligomers (oAβ42) and to confirm the controversial interaction of oAβ42 with the cellular prion protein (PrP(C)) on live neuronal cells. Our results show that, at nanomolar concentrations, oAβ42 interacts with PrP(C) and that the species bound to PrP(C) are predominantly small oligomers (dimers and trimers). Single-molecule biophysical studies can thus aid in deciphering the mechanisms that underlie receptor-mediated oAβ-induced neurotoxicity, and ultimately facilitate the discovery of novel inhibitors of these pathways.This is the final published version. It was first published by Wiley in ChemBioChem (http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1439-7633)
Binnenspannungen und Einheit – eine lutherische Sicht
Oligomers of the 40 and 42 residue amyloid-β peptides
(Aβ40
and Aβ42) have been implicated in the neuronal damage and impaired
cognitive function associated with Alzheimer’s disease. However,
little is known about the specific mechanisms by which these misfolded
species induce such detrimental effects on cells. In this work, we
use single-molecule imaging techniques to examine the initial interactions
between Aβ monomers and oligomers and the membranes of live
cells. This highly sensitive method enables the visualization of individual
Aβ species on the cell surface and characterization of their
oligomerization state, all at biologically relevant, nanomolar concentrations.
The results indicate that oligomers preferentially interact with cell
membranes, relative to monomers and that the oligomers become immobilized
on the cell surface. Additionally, we observe that the interaction
of Aβ species with the cell membrane is inhibited by the presence
of ATP-independent molecular chaperones. This study demonstrates the
power of this methodology for characterizing the interactions between
protein aggregates and the membranes of live neuronal cells at physiologically
relevant concentrations and opens the door to quantitative studies
of the cellular responses to potentially pathogenic oligomers
A quantitative comparison of single-dye tracking analysis tools using Monte Carlo simulations
Single-particle tracking (SPT) is widely used to study processes from membrane receptor organization to the dynamics of RNAs in living cells. While single-dye labeling strategies have the benefit of being minimally invasive, this comes at the expense of data quality; typically a data set of short trajectories is obtained and analyzed by means of the mean square displacements (MSD) or the distribution of the particles' displacements in a set time interval (jump distance, JD). To evaluate the applicability of both approaches, a quantitative comparison of both methods under typically encountered experimental conditions is necessary. Here we use Monte Carlo simulations to systematically compare the accuracy of diffusion coefficients (D-values) obtained for three cases: one population of diffusing species, two populations with different D-values, and a population switching between two D-values. For the first case we find that the MSD gives more or equally accurate results than the JD analysis (relative errors of D-values <6%). If two diffusing species are present or a particle undergoes a motion change, the JD analysis successfully distinguishes both species (relative error <5%). Finally we apply the JD analysis to investigate the motion of endogenous LPS receptors in live macrophages before and after treatment with methyl-β-cyclodextrin and latrunculin B
Capturing resting T cells: the perils of PLL.
To the editor — Full understanding of lymphocyte activation will require thorough characterization of the ‘resting’ state and how it changes. Surfaces coated with the cationic homopolymer poly-L-lysine (PLL) are widely used for total internal reflection fluorescence (TIRF) imaging of the organization of surface proteins on resting lymphocytes^1,2,3,4,5 because PLL is assumed to be inert. Here we found that PLL initiated T cell signaling and profoundly altered the activity of membrane proteins such as the T cell antigen receptor (TCR). Therefore, the emerging idea that receptors and signaling proteins cluster by default^1,2,3,4,5, which has been based mostly on studies of lymphocytes interacting with PLL-coated surfaces, needs reconsideration.Supported by a Royal Society University Research Fellowship (UF120277 to S.F.L.) and Research Professorship (RP150066 to D.K.); the EPSRC (EP/L027631/1 to A.P.,); the Wellcome Trust (098274/Z/12/Z to S.J.D., and WT101609MA to R.A.F.); PA Cephalosporin Fund (C.E.); the Wolfson Imaging Centre Oxford (funded by the Wolfson Foundation and Wellcome Trust; 104924/14/Z/14); the Micron Advanced BioImaging Unit (Wellcome Trust Strategic Award 091911); the Medical Research Council (MC_UU_12010/Unit Programmes G0902418 and MC_UU_12025); an MRC/BBSRC/EPSRC award (MR/K01577X/1); and a Marie Skłodowska-Curie Intra-European grant (707348 to I.U.)