177 research outputs found
Gene expression analysis indicates CB1 receptor upregulation in the hippocampus and neurotoxic effects in the frontal cortex 3 weeks after single-dose MDMA administration in Dark Agouti rats.
BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to impair cognitive functions on the long-run. Both hippocampal and frontal cortical regions have well established roles in behavior, memory formation and other cognitive tasks and damage of these regions is associated with altered behavior and cognitive functions, impairments frequently described in heavy MDMA users. The aim of this study was to examine the hippocampus, frontal cortex and dorsal raphe of Dark Agouti rats with gene expression arrays (Illumina RatRef bead arrays) looking for possible mechanisms and new candidates contributing to the effects of a single dose of MDMA (15 mg/kg) 3 weeks earlier. RESULTS: The number of differentially expressed genes in the hippocampus, frontal cortex and the dorsal raphe were 481, 155, and 15, respectively. Gene set enrichment analysis of the microarray data revealed reduced expression of 'memory' and 'cognition', 'dendrite development' and 'regulation of synaptic plasticity' gene sets in the hippocampus, parallel to the upregulation of the CB1 cannabinoid- and Epha4, Epha5, Epha6 ephrin receptors. Downregulated gene sets in the frontal cortex were related to protein synthesis, chromatin organization, transmembrane transport processes, while 'dendrite development', 'regulation of synaptic plasticity' and 'positive regulation of synapse assembly' gene sets were upregulated. Changes in the dorsal raphe region were mild and in most cases not significant. CONCLUSION: The present data raise the possibility of new synapse formation/synaptic reorganization in the frontal cortex three weeks after a single neurotoxic dose of MDMA. In contrast, a prolonged depression of new neurite formation in the hippocampus is suggested by the data, which underlines the particular vulnerability of this brain region after the drug treatment. Finally, our results also suggest the substantial contribution of CB1 receptor and endocannabinoid mediated pathways in the hippocampal impairments. Taken together the present study provides evidence for the participation of new molecular candidates in the long-term effects of MDMA
Reduced Spontaneous Eye Blink Rates in Recreational Cocaine Users: Evidence for Dopaminergic Hypoactivity
Chronic use of cocaine is associated with a reduced density of dopaminergic D2 receptors in the striatum, with negative consequences for cognitive control processes. Increasing evidence suggests that cognitive control is also affected in recreational cocaine consumers. This study aimed at linking these observations to dopaminergic malfunction by studying the spontaneous eyeblink rate (EBR), a marker of striatal dopaminergic functioning, in adult recreational users and a cocaine-free sample that was matched on age, race, gender, and personality traits. Correlation analyses show that EBR is significantly reduced in recreational users compared to cocaine-free controls, suggesting that cocaine use induces hypoactivity in the subcortical dopamine system
AMPT-induced monoamine depletion in humans: evaluation of two alternative [123I]IBZM SPECT procedures
Purpose
Acute monoamine depletion paradigms using alpha-methyl-para-tyrosine (AMPT) combined with single photon emission computed tomography (SPECT) have been used successfully to evaluate disturbances in central dopaminergic neurotransmission. However, severe side effects due to relatively high doses (4,500 to 8,000 mg) of AMPT have been reasons for study withdrawal. Thus, we assessed the effectiveness and tolerability of two alternative procedures, using lower doses of AMPT.
Methods
Six healthy subjects underwent three measurements of striatal dopamine D2 receptor (D2R)-binding potential (BPND) with SPECT and the selective radiolabeled D2R antagonist [123I]IBZM. All subjects were scanned in the absence of pharmacological intervention (baseline) and after two different depletion procedures. In the first depletion session, over 6 h, subjects were administered 1,500 mg of AMPT before scanning. In the second depletion session, over 25 h, subjects were administered 40 mg AMPT/kg body weight. We also administered the Subjective Well-being Under Neuroleptic Treatment Scale, a self-report instrument designed to measure the subjective experience of patients on neuroleptic medication.
Results
We found no change of mean D2R BPND after the first and short AMPT challenge compared to the baseline. However, we found a significant increase in striatal D2R BPND binding after the AMPT challenge adjusted for bodyweight compared to both other regimen. Although subjective well-being worsened after the prolonged AMPT challenge, no severe side effects were reported.
Conclusions
Our results imply a low-dosage, suitable alternative to the common AMPT procedure. The probability of side effects and study withdrawal can be reduced by this procedure
Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats
<p>Abstract</p> <p>Background</p> <p>Many studies have focused on the implication of the serotonin and dopamine systems in neuroadaptive responses to the recreational drug 3,4-methylenedioxy-metamphetamine (MDMA). Less attention has been given to the major excitatory neurotransmitter glutamate known to be implicated in schizophrenia and drug addiction. The aim of the present study was to investigate the effect of repeated intermittent MDMA administration upon gene-transcript expression of the glutamate transporters (EAAT1, EAAT2-1, EAAT2-2), the glutamate receptor subunits of AMPA (GluR1, GluR2, GluR3), the glutamate receptor subunits of NMDA (NR1, NR2A and NR2B), as well as metabotropic glutamate receptors (mGluR1, mGluR2, mGluR3, mGluR5) in six different brain regions. Adolescent male Sprague Dawley rats received MDMA at the doses of 3 × 1 and 3 × 5 mg/kg/day, or 3× vehicle 3 hours apart, every 7<sup>th </sup>day for 4 weeks. The gene-transcript levels were assessed using real-time PCR validated with a range of housekeeping genes.</p> <p>Results</p> <p>The findings showed pronounced enhancements in gene-transcript expression of GluR2, mGluR1, mGluR5, NR1, NR2A, NR2B, EAAT1, and EAAT2-2 in the cortex at bregma +1.6. In the caudate putamen, mRNA levels of GluR3, NR2A, and NR2B receptor subunits were significantly increased. In contrast, the gene-transcript expression of GluR1 was reduced in the hippocampus. In the hypothalamus, there was a significant increase of GluR1, GluR3, mGluR1, and mGluR3 gene-transcript expressions.</p> <p>Conclusion</p> <p>Repeated intermittent MDMA administration induces neuroadaptive changes in gene-transcript expressions of glutamatergic NMDA and AMPA receptor subunits, metabotropic receptors and transporters in regions of the brain regulating reward-related associative learning, cognition, and memory and neuro-endocrine functions.</p
The differential effects of ecstasy/polydrug use on executive components: shifting, inhibition, updating and access to semantic memory
Rationale/Objectives
Recent theoretical models suggest that the central executive may not be a unified structure. The present study explored the nature of central executive deficits in ecstasy users.
Methods
In study 1, 27 ecstasy users and 34 non-users were assessed using tasks to tap memory updating (computation span; letter updating) and access to long-term memory (a semantic fluency test and the Chicago Word Fluency Test). In study 2, 51 ecstasy users and 42 non-users completed tasks that assess mental set switching (number/letter and plus/minus) and inhibition (random letter generation).
Results
MANOVA revealed that ecstasy users performed worse on both tasks used to assess memory updating and on tasks to assess access to long-term memory (C- and S-letter fluency). However, notwithstanding the significant ecstasy group-related effects, indices of cocaine and cannabis use were also significantly correlated with most of the executive measures. Unexpectedly, in study 2, ecstasy users performed significantly better on the inhibition task, producing more letters than non-users. No group differences were observed on the switching tasks. Correlations between indices of ecstasy use and number of letters produced were significant.
Conclusions
The present study provides further support for ecstasy/polydrug-related deficits in memory updating and in access to long-term memory. The surplus evident on the inhibition task should be treated with some caution, as this was limited to a single measure and has not been supported by our previous work
Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway
<p><b>Abstract</b></p> <p><b>Background</b></p> <p>It is well known that methamphetamine (METH) is neurotoxic and recent studies have suggested the involvement of neuroinflammatory processes in brain dysfunction induced by misuse of this drug. Indeed, glial cells seem to be activated in response to METH, but its effects on microglial cells are not fully understood. Moreover, it has been shown that cytokines, which are normally released by activated microglia, may have a dual role in response to brain injury. This led us to study the toxic effect of METH on microglial cells by looking to cell death and alterations of tumor necrosis factor-alpha (TNF-α) and interleukine-6 (IL-6) systems, as well as the role played by these cytokines.</p> <p><b>Methods</b></p> <p>We used the N9 microglial cell line, and cell death and proliferation were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and incorporation of bromodeoxyuridine, respectively. The TNF-α and IL-6 content was quantified by enzyme-linked immunosorbent assay, and changes in TNF receptor 1, IL-6 receptor-alpha, Bax and Bcl-2 protein levels by western blotting. Immunocytochemistry analysis was also performed to evaluate alterations in microglial morphology and in the protein expression of phospho-signal transducer and activator of transcription 3 (pSTAT3).</p> <p><b>Results</b></p> <p>METH induced microglial cell death in a concentration-dependent manner (EC<sub>50</sub> = 1 mM), and also led to significant morphological changes and decreased cell proliferation. Additionally, this drug increased TNF-α extracellular and intracellular levels, as well as its receptor protein levels at 1 h, whereas IL-6 and its receptor levels were increased at 24 h post-exposure. However, the endogenous proinflammatory cytokines did not contribute to METH-induced microglial cell death. On the other hand, exogenous low concentrations of TNF-α or IL-6 had a protective effect. Interestingly, we also verified that the anti-apoptotic role of TNF-α was mediated by activation of IL-6 signaling, specifically the janus kinase (JAK)-STAT3 pathway, which in turn induced down-regulation of the Bax/Bcl-2 ratio.</p> <p><b>Conclusions</b></p> <p>These findings show that TNF-α and IL-6 have a protective role against METH-induced microglial cell death via the IL-6 receptor, specifically through activation of the JAK-STAT3 pathway, with consequent changes in pro- and anti-apoptotic proteins.</p
Selective Vulnerability in Striosomes and in the Nigrostriatal Dopaminergic Pathway After Methamphetamine Administration: Early Loss of TH in Striosomes After Methamphetamine
Methamphetamine (METH), a commonly abused psychostimulant, causes dopamine neurotoxicity in humans, rodents, and nonhuman primates. This study examined the selective neuroanatomical pattern of dopaminergic neurotoxicity induced by METH in the mouse striatum. We examined the effect of METH on tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoreactivity in the different compartments of the striatum and in the nucleus accumbens. The levels of dopamine and its metabolites, 3,4-dihidroxyphenylacetic acid and homovanillic acid, as well as serotonin (5-HT) and its metabolite, 5-hydroxyindolacetic acid, were also quantified in the striatum. Mice were given three injections of METH (4 mg/kg, i.p.) at 3 h intervals and sacrificed 7 days later. This repeated METH injection induced a hyperthermic response and a decrease in striatal concentrations of dopamine and its metabolites without affecting 5-HT concentrations. In addition, the drug caused a reduction in TH- and DAT-immunoreactivity when compared to saline-treated animals. Interestingly, there was a significantly greater loss of TH- and DAT-immunoreactivity in striosomes than in the matrix. The predominant loss of dopaminergic terminals in the striosomes occurred along the rostrocaudal axis of the striatum. In contrast, METH did not decrease TH- or DAT-immunoreactivity in the nucleus accumbens. These results provide the first evidence that compartments of the mouse striatum, striosomes and matrix, and mesolimbic and nigrostriatal pathways have different vulnerability to METH. This pattern is similar to that observed with other neurotoxins such as MPTP, the most widely used model of Parkinson’s disease, in early Huntington’s disease and hypoxic/ischemic injury, suggesting that these conditions might share mechanisms of neurotoxicity
Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems
Rodent models of focal cerebral ischemia are essential tools in experimental stroke research. They have added tremendously to our understanding of injury mechanisms in stroke and have helped to identify potential therapeutic targets. A plethora of substances, however, in particular an overwhelming number of putative neuroprotective agents, have been shown to be effective in preclinical stroke research, but have failed in clinical trials. A lot of factors may have contributed to this failure of translation from bench to bedside. Often, deficits in the quality of experimental stroke research seem to be involved. In this article, we review the commonest rodent models of focal cerebral ischemia - middle cerebral artery occlusion, photothrombosis, and embolic stroke models - with their respective advantages and problems, and we address the issue of quality in preclinical stroke modeling as well as potential reasons for translational failure
- …