327 research outputs found

    The Case Against Compulsory Automobile Insurance

    Get PDF

    Relation Between First Arrival Time and Permeability in Self-Affine Fractures with Areas in Contact

    Full text link
    We demonstrate that the first arrival time in dispersive processes in self-affine fractures are governed by the same length scale characterizing the fractures as that which controls their permeability. In one-dimensional channel flow this length scale is the aperture of the bottle neck, i.e., the region having the smallest aperture. In two dimensions, the concept of a bottle neck is generalized to that of a minimal path normal to the flow. The length scale is then the average aperture along this path. There is a linear relationship between the first arrival time and this length scale, even when there is strong overlap between the fracture surfaces creating areas with zero permeability. We express the first arrival time directly in terms of the permeability.Comment: EPL (2012)

    Internal Friction and Vulnerability of Mixed Alkali Glasses

    Full text link
    Based on a hopping model we show how the mixed alkali effect in glasses can be understood if only a small fraction c_V ofthe available sites for the mobile ions is vacant. In particular, we reproduce the peculiar behavior of the internal friction and the steep fall (''vulnerability'') of the mobility of the majority ion upon small replacements by the minority ion. The single and mixed alkali internal friction peaks are caused by ion-vacancy and ion-ion exchange processes. If c_V is small, they can become comparable in height even at small mixing ratios. The large vulnerability is explained by a trapping of vacancies induced by the minority ions. Reasonable choices of model parameters yield typical behaviors found in experiments.Comment: 4 pages, 4 figure

    Rocket Engine Plume Diagnostics at Stennis Space Center

    Get PDF
    The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed

    Formation and evolution of molecular products in α-pinene secondary organic aerosol

    Get PDF
    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58–72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA

    Poor fit to the multispecies coalescent is widely detectable in empirical data

    Get PDF
    Model checking is a critical part of Bayesian data analysis, yet it remains largely unused in systematic studies. Phylogeny estimation has recently moved into an era of increasingly complex models that simultaneously account for multiple evolutionary processes, the statistical fit of these models to the data has rarely been tested. Here we develop a posterior predictive simulation-based model check for a commonly used multispecies coalescent model, implemented in *BEAST, and apply it to 25 published data sets. We show that poor model fit is detectable in the majority of data sets; that this poor fit can mislead phylogenetic estimation; and that in some cases it stems from processes of inherent interest to systematists. We suggest that as systematists scale up to phylogenomic data sets, which will be subject to a heterogeneous array of evolutionary processes, critically evaluating the fit of models to data is an analytical step that can no longer be ignored. [Gene duplication and extinction; gene tree; hybridization; model fit; multispecies coalescent; next-generation sequencing; posterior predictive simulation; species delimitation; species tree.] © The Author(s) 2013

    Aging ebbs the flow of thought: Adult age differences in mind wandering, executive control, and self-evaluation

    Get PDF
    Abstract: Two experiments examined the relations among adult aging, mind wandering, and executive-task performance, following from surprising laboratory findings that older adults report fewer taskunrelated thoughts (TUTs) than do younger adults (e.g., aging | mind wandering | executive control | consciousness | working memory

    Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol

    Get PDF
    Atmospheric secondary organic aerosol (SOA) has important impacts on climate and air quality, yet models continue to have difficulty in accurately simulating SOA concentrations. Nearly all SOA models are tied to observations of SOA formation in laboratory chamber experiments. Here, a comprehensive analysis of new experimental results demonstrates that the formation of SOA in laboratory chambers may be substantially suppressed due to losses of SOA-forming vapors to chamber walls, which leads to underestimates of SOA in air-quality and climate models, especially in urban areas where anthropogenic SOA precursors dominate. This analysis provides a time-dependent framework for the interpretation of laboratory chamber experiments that will allow for development of parameterized models of SOA formation that are appropriate for use in atmospheric models

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe
    • …
    corecore