345 research outputs found

    Safety and efficacy of the tumour-selective adenovirus enadenotucirev with or without paclitaxel in platinum-resistant ovarian cancer: a phase 1 clinical trial

    Get PDF
    Background Treatment outcomes remain poor in recurrent platinum-resistant ovarian cancer. Enadenotucirev, a tumor-selective and blood stable adenoviral vector, has demonstrated a manageable safety profile in phase 1 studies in epithelial solid tumors. Methods We conducted a multicenter, open-label, phase 1 dose-escalation and dose-expansion study (OCTAVE) to assess enadenotucirev plus paclitaxel in patients with platinum-resistant epithelial ovarian cancer. During phase 1a, the maximum tolerated dose of intraperitoneally administered enadenotucirev monotherapy (three doses; days 1, 8 and 15) was assessed using a 3+3 dose-escalation model. Phase 1b included a dose-escalation and an intravenous dosing dose-expansion phase assessing enadenotucirev plus paclitaxel. For phase 1a/b, the primary objective was to determine the maximum tolerated dose of enadenotucirev (with paclitaxel in phase 1b). In the dose-expansion phase, the primary endpoint was progression-free survival (PFS). Additional endpoints included response rate and T-cell infiltration. Results Overall, 38 heavily pretreated patients were enrolled and treated. No dose-limiting toxicities were observed at any doses. However, frequent catheter complications led to the discontinuation of intraperitoneal dosing during phase 1b. Intravenous enadenotucirev (1Ɨ1012ā€‰viral particles; days 1, 3 and 5 every 28-days for two cycles) plus paclitaxel (80 mg/m2; days 9, 16 and 23 of each cycle) was thus selected for dose-expansion. Overall, 24/38 (63%) patients experienced at least 1 Grade ā‰„3ā€‰treatment-emergent adverse event (TEAE); most frequently neutropenia (21%). Six patients discontinued treatment due to TEAEs, including one patient due to a grade 2 treatment-emergent serious AE of catheter site infection (intraperitoneal enadenotucirev monotherapy). Among the 20 patients who received intravenous enadenotucirev plus paclitaxel, 4-month PFS rate was 64% (median 6.2 months), objective response rate was 10%, 35% of patients achieved stable disease and 65% of patients had a reduction in target lesion burden at ā‰„1 time point. Five out of six patients with matched pre-treatment and post-treatment biopsies treated with intravenous enadenotucirev plus paclitaxel had increased (mean 3.1-fold) infiltration of CD8 +T cells in post-treatment biopsies. Conclusions Intravenously dosed enadenotucirev plus paclitaxel demonstrated manageable tolerability, an encouraging median PFS and increased tumor immune-cell infiltration in platinum-resistant ovarian cancer. Trial registration number NCT02028117

    Tumors defective in homologous recombination rely on oxidative metabolism: Relevance to treatments with PARP inhibitors

    Get PDF
    Mitochondrial metabolism and the generation of reactive oxygen species (ROS) contribute to the acquisition of DNA mutations and genomic instability in cancer. How genomic instability influences the metabolic capacity of cancer cells is nevertheless poorly understood. Here, we show that homologous recombinationā€defective (HRD) cancers rely on oxidative metabolism to supply NAD+ and ATP for poly(ADPā€ribose) polymerase (PARP)ā€dependent DNA repair mechanisms. Studies in breast and ovarian cancer HRD models depict a metabolic shift that includes enhanced expression of the oxidative phosphorylation (OXPHOS) pathway and its key components and a decline in the glycolytic Warburg phenotype. Hence, HRD cells are more sensitive to metformin and NAD+ concentration changes. On the other hand, shifting from an OXPHOS to a highly glycolytic metabolism interferes with the sensitivity to PARP inhibitors (PARPi) in these HRD cells. This feature is associated with a weak response to PARP inhibition in patientā€derived xenografts, emerging as a new mechanism to determine PARPi sensitivity. This study shows a mechanistic link between two major cancer hallmarks, which in turn suggests novel possibilities for specifically treating HRD cancers with OXPHOS inhibitors

    Polo like kinase 2 tumour suppressor and cancer biomarker: new perspectives on drug sensitivity/resistance in ovarian cancer

    Get PDF
    The polo-like kinase PLK2 has recently been identified as a potential theranostic marker in the management of chemotherapy sensitive cancers. The methylation status of the PLK2 CpG island varies with sensitivity to paclitaxel and platinum in ovarian cancer cell lines. Importantly, extrapolation of these in vitro data to the clinical setting confirms that the methylation status of the PLK2 CpG island predicts outcomes in patients treated with carboplatin and paclitaxel chemotherapy. A second cell cycle regulator, p57Kip2, is also subject to epigenetic silencing in carboplatin resistance in vitro and in vivo, emphasising that cell cycle regulators are important determinants of sensitivity to chemotherapeutic agents and providing insights into the phenomenon of collateral drug sensitivity in oncology. Understanding the mechanistic basis and identification of robust biomarkers to predict collateral sensitivity may inform optimal use of chemotherapy in patients receiving multiple lines of treatment

    "Re-educating" tumor-associated macrophages by targeting NF-kappaB

    Get PDF
    The nuclear factor kappaB (NF-kappaB) signaling pathway is important in cancer-related inflammation and malignant progression. Here, we describe a new role for NF-kappaB in cancer in maintaining the immunosuppressive phenotype of tumor-associated macrophages (TAMs). We show that macrophages are polarized via interleukin (IL)-1R and MyD88 to an immunosuppressive "alternative" phenotype that requires IkappaB kinase beta-mediated NF-kappaB activation. When NF-kappaB signaling is inhibited specifically in TAMs, they become cytotoxic to tumor cells and switch to a "classically" activated phenotype; IL-12(high), major histocompatibility complex II(high), but IL-10(low) and arginase-1(low). Targeting NF-kappaB signaling in TAMs also promotes regression of advanced tumors in vivo by induction of macrophage tumoricidal activity and activation of antitumor activity through IL-12-dependent NK cell recruitment. We provide a rationale for manipulating the phenotype of the abundant macrophage population already located within the tumor microenvironment; the potential to "re-educate" the tumor-promoting macrophage population may prove an effective and novel therapeutic approach for cancer that complements existing therapies

    Oncologist-led BRCA ā€˜mainstreamingā€™ in the ovarian cancer clinic: A study of 255 patients and its impact on their management

    Get PDF
    Although guidelines recommend BRCA testing for all women with non-mucinous epithelial ovarian cancer, there is significant variability in access to testing across the UK. A germline BRCA mutation (BRCAm) in ovarian cancer patients provides prognostic and predictive information and influences clinical management, such as the use of PARP inhibitors, which have demonstrated a progression-free survival benefit in the BRCAm cohort. Additionally, the finding of a BRCAm has significant implications for patients and their families in terms of cancer risk and prevention. We studied the impact of a newly-formed, oncologist-led ā€˜mainstreamingā€™ germline BRCA testing pathway in 255 ovarian cancer patients at Imperial College NHS Trust. Prior to the establishment of ā€˜mainstreamingā€™, uptake of germline BRCA testing was 14% with a mean turnaround time of 148.2 calendar days. The ā€˜mainstreamingā€™ approach led to a 95% uptake of germline BRCA testing and a mean turnaround time of 20.6 days. Thirty-four (13.33%) BRCAm patients were identified. At the time of data collection nine BRCAm patients had received a PARP inhibitor off-trial, three had entered a PARP inhibitor trial and 5 were receiving platinum-based chemotherapy with a plan to receive PARP inhibitor maintenance. This study provides further evidence of the impact of oncologist-led ā€˜mainstreamingā€™ programs

    CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling

    Get PDF
    CD44 is a facultative proteoglycan implicated in cell adhesion and trafficking, as well as in tumor survival and progression. We demonstrate here that CD44 heparan sulfate proteoglycan (CD44HSPG) recruits proteolytically active matrix metalloproteinase 7 (matrilysin, MMP-7) and heparin-binding epidermal growth factor precursor (pro-HB-EGF) to form a complex on the surface of tumor cell lines, postpartum uterine and lactating mammary gland epithelium, and uterine smooth muscle. The HB-EGF precursor within this complex is processed by MMP-7, and the resulting mature HB-EGF engages and activates its receptor, ErbB4, leading to, among other events, cell survival. In CD44(-/-) mice, postpartum uterine involution is accelerated and maintenance of lactation is impaired. In both uterine and mammary epithelia of these mice, MMP-7 localization is altered and pro-HB-EGF processing as well as ErbB4 activation are decreased. Our observations provide a mechanism for the assembly and function of a cell surface complex composed of CD44HSPG, MMP 7, HB-EGF, and ErbB4 that may play an important role in the regulation of physiological tissue remodelin

    Dual G9A/EZH2 inhibition stimulates anti-tumour immune response in ovarian high-grade serous carcinoma

    Get PDF
    Ovarian high-grade serous carcinoma (HGSC) prognosis correlates directly with presence of intratumoral lymphocytes. However, cancer immunotherapy has yet to achieve meaningful survival benefit in patients with HGSC. Epigenetic silencing of immunostimulatory genes is implicated in immune evasion in HGSC and re-expression of these genes could promote tumour immune clearance. We discovered that simultaneous inhibition of the histone methyltransferases G9A and EZH2 activates the CXCL10-CXCR3 axis and increases homing of intratumoral effector lymphocytes and natural killer cells whilst suppressing tumour-promoting FoxP3+ CD4 T cells. The dual G9A/EZH2 inhibitor HKMTI-1-005 induced chromatin changes that resulted in the transcriptional activation of immunostimulatory gene networks, including the re-expression of elements of the ERV-K endogenous retroviral family. Importantly, treatment with HKMTI-1-005 improved the survival of mice bearing Trp53-/- null ID8 ovarian tumours and resulted in tumour burden reduction. These results indicate that inhibiting G9A and EZH2 in ovarian cancer alters the immune microenvironment and reduces tumour growth and therefore positions dual inhibition of G9A/EZH2 as a strategy for clinical development

    Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis

    Get PDF
    Emerging evidence shows that the efficacy of chemotherapeutic drugs are reliant on their capability to induce immunogenic cell death (ICD), thus transforming dying tumor cells into antitumor vaccines. We wanted to uncover potential therapeutic strategies that target ovarian cancer by having a better understanding of the standard-of-care chemotherapy treatment. Here, we showed in ovarian cancer that paclitaxel induced ICD-associated DAMPs (i.e. damage-associated molecular patterns, such as CALR exposure, ATP secretion and HMGB1 release) in vitro and elicited significant antitumor responses in tumor vaccination assays in vivo. Paclitaxel-induced TLR4 signaling was essential to the release of DAMPs, which lead to the activation of NF-ĪŗB-mediated CCL2 transcription and IKK2-mediated SNARE-dependent vesicle exocytosis, thus exposing CALR on the cell surface. Paclitaxel induced ER stress, which triggered PERK activation and eIF2Ī± phosphorylation independent of TLR4. Paclitaxel chemotherapy induced T cell infiltration in ovarian tumors of the responsive patients; CALR expression in primary ovarian tumors also correlated with patients' survival and patient response to chemotherapy. These findings suggest that the effectiveness of paclitaxel relied upon the activation of antitumor immunity through ICD via TLR4 and highlighted the importance of CALR expression in cancer cells as an indicator of response to paclitaxel chemotherapy in ovarian cancer
    • ā€¦
    corecore