6,463 research outputs found

    Homogeneous cooling of rough, dissipative particles: Theory and simulations

    Get PDF
    We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an event driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of a generalized homogeneous cooling state. For short times tt, translational and rotational energy are found to change linearly with tt. For large times both energies decay like t−2t^{-2} with a ratio independent of time, but not corresponding to equipartition. Good agreement is found between theory and simulations, as long as no clustering instability is observed. System parameters, i.e. density, particle size, and particle mass can be absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure

    Dynamics of inelastically colliding rough spheres: Relaxation of translational and rotational energy

    Full text link
    We study the exchange of kinetic energy between translational and rotational degrees of freedom for inelastic collisions of rough spheres. Even if equipartition holds in the initial state it is immediately destroyed by collisions. The simplest generalisation of the homogeneous cooling state allows for two temperatures, characterizing translational and rotational degrees of freedom separately. For times larger than a crossover frequency, which is determined by the Enskog frequency and the initial temperature, both energies decay algebraically like t−2t^{-2} with a fixed ratio of amplitudes, different from one.Comment: 5 pages, RevTeX, 2 eps figures, slightly expanded discussion, new figures with dimensionless units, added references, accepted for publication in PRE as a Rapid Com

    Energy flows in vibrated granular media

    Full text link
    We study vibrated granular media, investigating each of the three components of the energy flow: particle-particle dissipation, energy input at the vibrating wall, and particle-wall dissipation. Energy dissipated by interparticle collisions is well estimated by existing theories when the granular material is dilute, and these theories are extended to include rotational kinetic energy. When the granular material is dense, the observed particle-particle dissipation rate decreases to as little as 2/5 of the theoretical prediction. We observe that the rate of energy input is the weight of the granular material times an average vibration velocity times a function of the ratio of particle to vibration velocity. `Particle-wall' dissipation has been neglected in all theories up to now, but can play an important role when the granular material is dilute. The ratio between gravitational potential energy and kinetic energy can vary by as much as a factor of 3. Previous simulations and experiments have shown that E ~ V^delta, with delta=2 for dilute granular material, and delta ~ 1.5 for dense granular material. We relate this change in exponent to the departure of particle-particle dissipation from its theoretical value.Comment: 19 pages revtex, 10 embedded eps figures, accepted by PR

    Effects of Velocity Correlation on Early Stage of Free Cooling Process of Inelastic Hard Sphere System

    Full text link
    The free cooling process in the inelastic hard sphere system is studied by analysing the data from large scale molecular dynamics simulations on a three dimensional system. The initial energy decay, the velocity distribution function, and the velocity correlation functions are calculated to be compared with theoretical predictions. The energy decay rate in the homogeneous cooling state is slightly but distinctively smaller than that expected from the independent collision assumption. The form of the one particle velocity distribution is found not to be stationary. These contradict to the predictions of the kinetic theory based on the Enskog-Boltzmann equation and suggest that the velocity correlation is already important in the early stage of homogeneous cooling state. The energy decay rate is analysed in terms of the velocity correlation.Comment: 9 pages (figures included). To be published in J. Phys. Soc. Jpn. Vol. 73 No. 1 (2004) Added two references and removed one. Changed the name of T_{L}. Added unit constants in Sec. 5 and

    Two-dimensional Burgers Cellular Automaton

    Full text link
    A two-dimensional cellular automaton(CA) associated with a two-dimensional Burgers equation is presented. The 2D Burgers equation is an integrable generalization of the well-known Burgers equation, and is transformed into a 2D diffusion equation by the Cole-Hopf transformation. The CA is derived from the 2D Burgers equation by using the ultradiscrete method, which can transform dependent variables into discrete ones. Some exact solutions of the CA, such as shock wave solutions, are studied in detail.Comment: Latex2.09, 17 pages including 7 figure

    Boundary effects in the stepwise structure of the Lyapunov spectra for quasi-one-dimensional systems

    Full text link
    Boundary effects in the stepwise structure of the Lyapunov spectra and the corresponding wavelike structure of the Lyapunov vectors are discussed numerically in quasi-one-dimensional systems consisting of many hard-disks. Four kinds of boundary conditions constructed by combinations of periodic boundary conditions and hard-wall boundary conditions are considered, and lead to different stepwise structures of the Lyapunov spectra in each case. We show that a spatial wavelike structure with a time-oscillation appears in the spatial part of the Lyapunov vectors divided by momenta in some steps of the Lyapunov spectra, while a rather stationary wavelike structure appears in the purely spatial part of the Lyapunov vectors corresponding to the other steps. Using these two kinds of wavelike structure we categorize the sequence and the kinds of steps of the Lyapunov spectra in the four different boundary condition cases.Comment: 33 pages, 25 figures including 10 color figures. Manuscript including the figures of better quality is available from http://newt.phys.unsw.edu.au/~gary/step.pd

    Energy non-equipartition in systems of inelastic, rough spheres

    Get PDF
    We calculate and verify with simulations the ratio between the average translational and rotational energies of systems with rough, inelastic particles, either forced or freely cooling. The ratio shows non-equipartition of energy. In stationary flows, this ratio depends mainly on the particle roughness, but in nonstationary flows, such as freely cooling granular media, it also depends strongly on the normal dissipation. The approach presented here unifies and simplifies different results obtained by more elaborate kinetic theories. We observe that the boundary induced energy flux plays an important role.Comment: 4 pages latex, 4 embedded eps figures, accepted by Phys Rev

    Coefficient of normal restitution of viscous particles and cooling rate of granular gases

    Full text link
    We investigate the cooling rate of a gas of inelastically interacting particles. When we assume velocity dependent coefficients of restitution the material cools down slower than with constant restitution. This behavior might have large influence to clustering and structure formation processes.Comment: 3 figures, Phys. Rev. E (in press

    Granular cooling of hard needles

    Full text link
    We have developed a kinetic theory of hard needles undergoing binary collisions with loss of energy due to normal and tangential restitution. In addition, we have simulated many particle systems of granular hard needles. The theory, based on the assumption of a homogeneous cooling state, predicts that granular cooling of the needles proceeds in two stages: An exponential decay of the initial configuration to a state where translational and rotational energies take on a time independent ratio (not necessarily unity), followed by an algebraic decay of the total kinetic energy ∼t−2\sim t^{-2}. The simulations support the theory very well for low and moderate densities. For higher densities, we have observed the onset of the formation of clusters and shear bands.Comment: 7 pages, 8 figures; major changes, extended versio
    • …
    corecore