8,792 research outputs found
A locally adaptive time-stepping algorithm for\ud petroleum reservoir simulations
An algorithm for locally adapting the step-size for large scale finite volume simulations of multi-phase flow in petroleum reservoirs is suggested which allows for an “all-in-one” implicit calculation of behaviour over a very large time scale. Some numerical results for simple two-phase flow in one space dimension illustrate the promise of the algorithm, which has also been applied to very simple 3D cases. A description of the algorithm is presented here along with early results. Further development of the technique is hoped to facilitate useful scaling properties
Mechanical Feedback from Active Galactic Nuclei in Galaxies, Groups, and Clusters
The radiative cooling timescales at the centers of hot atmospheres
surrounding elliptical galaxies, groups, and clusters are much shorter than
their ages. Therefore, hot atmospheres are expected to cool and to form stars.
Cold gas and star formation are observed in central cluster galaxies but at
levels below those expected from an unimpeded cooling flow. X-ray observations
have shown that wholesale cooling is being offset by mechanical heating from
radio active galactic nuclei. Feedback is widely considered to be an important
and perhaps unavoidable consequence of the evolution of galaxies and
supermassive black holes. We show that cooling X-ray atmospheres and the
ensuing star formation and nuclear activity are probably coupled to a
self-regulated feedback loop. While the energetics are now reasonably well
understood, other aspects of feedback are not. We highlight the problems of
atmospheric heating and transport processes, accretion, and nuclear activity,
and we discuss the potential role of black hole spin. We discuss X-ray imagery
showing that the chemical elements produced by central galaxies are being
dispersed on large scales by outflows launched from the vicinity of
supermassive black holes. Finally, we comment on the growing evidence for
mechanical heating of distant cluster atmospheres by radio jets and its
potential consequences for the excess entropy in hot halos and a possible
decline in the number of distant cooling flows.Comment: Accepted for publication in New Journal of Physics Focus Issue on
Clusters of Galaxie
Quasi-rigidity: some uniqueness issues
Quasi-rigidity means that one builds a theory for assemblies of grains under
a slowly changing external load by using the deformation of those grains as a
small parameter. Is quasi-rigidity a complete theory for these granular
assemblies? Does it provide unique predictions of the assembly's behavior, or
must some other process be invoked to decide between several possibilities? We
provide evidence that quasi-rigidity is a complete theory by showing that two
possible sources of indeterminacy do not exist for the case of disk shaped
grains. One possible source of indeterminacy arises from zero-frequency modes
present in the packing. This problem can be solved by considering the
conditions required to obtain force equilibrium. A second possible source of
indeterminacy is the necessity to choose the status (sliding or non-sliding) at
each contact. We show that only one choice is permitted, if contacts slide only
when required by Coulomb friction.Comment: 14 pages, 3 figures, submitted to Phys Rev E (introduction and
conclusion revised
X-ray Supercavities in the Hydra A Cluster and the Outburst History of the Central Galaxy's Active Nucleus
A 227 ksec Chandra Observatory X-ray image of the hot plasma in the Hydra A
cluster has revealed an extensive cavity system. The system was created by a
continuous outflow or a series of bursts from the nucleus of the central galaxy
over the past 200-500 Myr. The cavities have displaced 10% of the plasma within
a 300 kpc radius of the central galaxy, creating a swiss-cheese-like topology
in the hot gas. The surface brightness decrements are consistent with empty
cavities oriented within 40 degrees of the plane of the sky. The outflow has
deposited upward of 10^61 erg into the cluster gas, most of which was propelled
beyond the inner ~100 kpc cooling region. The supermassive black hole has
accreted at a rate of approximately 0.1-0.25 solar masses per year over this
time frame, which is a small fraction of the Eddington rate of a ~10^9 solar
mass black hole, but is dramatically larger than the Bondi rate. Given the
previous evidence for a circumnuclear disk of cold gas in Hydra A, these
results are consistent with the AGN being powered primarily by infalling cold
gas. The cavity system is shadowed perfectly by 330 MHz radio emission. Such
low frequency synchrotron emission may be an excellent proxy for X-ray cavities
and thus the total energy liberated by the supermassive black hole.Comment: 8 pages, 3 figures; Submitted to ApJ, revised per referee's
suggestion
Using geophysical surveys to test tracer-based storage estimates in headwater catchments
Acknowledgements The authors are grateful to Stian Bradford, Chris Gabrielli, and Julie Timms for practical and logistical assistance. The provision of transport by Iain Malcolm and Ross Glover of Marine Scotland Science was greatly appreciated. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016).Peer reviewedPostprin
- …