18 research outputs found

    Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes

    Full text link
    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma heating and wind acceleration, and discusses the challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript; accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake (Berlin: Springer

    Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion

    Full text link
    The synthesis of 16 tetraalkyl ammonium bis(trifluoromethane sulfonyl) imide salts, (CnH2n+1)4 +N -N (SO2CF3)2 (n = 1, 2, 3, 4),&nbsp; (C2H5)2(i-C3H7)2 +N -N(SO2CF3)2, (C2H5)(CH3)(i-C3H7)2+N-N(SO2CF3)2, (n-C7H15)(C2H5)i-C3H7)2+N-N(SO2CF3)2 and (CnH2n+1)(CmH2m+1)3+N-N(SO2CF3)2 (n = 6,7,8; m = 1, 2, 4) are reported in this paper. Trends in properties of these salts are discussed. The symmetrical tetraalkyl ammonium salts with the bis(trifluoromethyl sulfonyl) imide anion exhibited a lower melting point than that of corresponding ammonium halides. The salts with low symmetry ammonium cations were found to be of generally lower melting point, and many were stable liquids at room temperature. Several of these did not crystallize during cooling below room temperature and exhibited glass transition temperatures in the region of &minus;60 &deg;C&sim;&minus;80 &deg;C. A comparison of properties between the ammonium imide salts and corresponding trifluoromethane sulfonates is also presented. <br /
    corecore