1,623 research outputs found

    A New Symmetry for QED

    Full text link
    We demonstrate that QED exhibits a previously unobserved symmetry. Some consequences are discussed.Comment: 9 pages, MZ-TH/93-02, DIAS-STP-93-0

    How do constituent quarks arise in QCD? Perturbation theory and the infra-red

    Full text link
    We motivate the use of dressed charges by arguing that such objects are needed to describe, e.g., constituent quarks and, in general, physical charged states in gauge theories. We give a short introduction to dressings in both QED and QCD. We put special emphasis on the infra-red properties of a moving dressed charge. To be more precise, we demonstrate that the one loop propagator of a relativistic dressed charge can be renormalized in the mass shell scheme with no infra-red divergence showing up.Comment: 5 pages, espcrc2.sty required, talk given at QDC-96, Montpellier, July 1996, A related simulation may be found at http://www.ifae.es/~roy

    Quantumness in decoherent quantum walk using measurement-induced disturbance

    Full text link
    The classicalization of a decoherent discrete-time quantum walk on a line or an n-cycle can be demonstrated in various ways that do not necessarily provide a geometry-independent description. For example, the position probability distribution becomes increasingly Gaussian, with a concomitant fall in the standard deviation, in the former case, but not in the latter. As another example, each step of the quantum walk on a line may be subjected to an arbitrary phase gate, without affecting the position probability distribution, no matter whether the walk is noiseless or noisy. This symmetry, which is absent in the case of noiseless cyclic walk, but is restored in the presence of sufficient noise, serves as an indicator of classicalization, but only in the cyclic case. Here we show that the degree of quantum correlations between the coin and position degrees of freedom, quantified by a measure based on the disturbance induced by local measurements (Luo, Phys. Rev. A 77, 022301 (2008)), provides a suitable measure of classicalization across both type of walks. Applying this measure to compare the two walks, we find that cyclic quantum walks tend to classicalize faster than quantum walks on a line because of more efficient phase randomization due to the self-interference of the two counter-rotating waves. We model noise as acting on the coin, and given by the squeezed generalized amplitude damping (SGAD) channel, which generalizes the generalized amplitude damping channel.Comment: 8 pages with 8 figures, Published versio

    Physical charges in QED and QCD

    Get PDF
    Talk given at the International Workshop on QCD Green's Functions, Confinement and Phenomenology, September 7-11 2009, ECT Trento, Italy. 8 pages, 3 pdf figures. V2: references added, to appear in PoSWe show that the `dressing' approach, which describes physical charges as gauge invariant composites of matter and clouds of gauge bosons, arises naturally in gauge theories. We give perturbative examples of dressings for both asymptotic charges and for states in which the fields are confined to a compact volume as is required, for example, by causality in pair creation. In QCD, we use dressed states to demonstrate explicitly how Gribov copies obstruct the non-perturbative construction of colour charges

    The Glue Around Quarks and the Interquark Potential

    Get PDF
    The quarks of quark models cannot be identified with the quarks of the QCD Lagrangian. We review the restrictions that gauge field theories place on any description of physical (colour) charges. A method to construct charged particles is presented. The solutions are applied to a variety of applications. Their Green's functions are shown to be free of infra-red divergences to all orders in perturbation theory. The interquark potential is analysed and it is shown that the interaction responsible for anti-screening results from the force between two separately gauge invariant constituent quarks. A fundamental limit on the applicability of quark models is identified.Comment: 4 pages, LaTeX, talk given at Montpellier meeting QCD9

    Quantum Mechanics Model on K\"ahler conifold

    Full text link
    We propose an exactly-solvable model of the quantum oscillator on the class of K\"ahler spaces (with conic singularities), connected with two-dimensional complex projective spaces. Its energy spectrum is nondegenerate in the orbital quantum number, when the space has non-constant curvature. We reduce the model to a three-dimensional system interacting with the Dirac monopole. Owing to noncommutativity of the reduction and quantization procedures, the Hamiltonian of the reduced system gets non-trivial quantum corrections. We transform the reduced system into a MIC-Kepler-like one and find that quantum corrections arise only in its energy and coupling constant. We present the exact spectrum of the generalized MIC-Kepler system. The one-(complex) dimensional analog of the suggested model is formulated on the Riemann surface over the complex projective plane and could be interpreted as a system with fractional spin.Comment: 5 pages, RevTeX format, some misprints heve been correcte
    corecore