428 research outputs found

    Temperature Evolution of the Quantum Gap in CsNiCl3

    Full text link
    Neutron scattering measurements on the one-dimensional gapped S=1 antiferromagnet, CsNiCl3, have shown that the excitation corresponding to the Haldane mass gap Delta at low temperatures persists as a resonant feature to high temperatures. We find that the strong upward renormalisation of the gap excitation, by a factor of three between 5 and 70K, is more than enough to overcome its decreasing lifetime. We find that the gap lifetime is substantially shorter than that predicted by the scaling theory of Damle and Sachdev in its low temperature range of validity. The upward gap renormalisation agrees with the non-linear sigma model at low temperatures and even up to T of order 2Delta provided an upper mass cutoff is included.Comment: Latex, 3 figures, accepted by Pysical Review

    The Quasi-1D S=1/2 Antiferromagnet Cs2CuCl4 in a Magnetic Field

    Full text link
    Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have been measured as a function of magnetic field using neutron scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D incommensurate ordering. Fields greater than Bc =1.66 T, but less than the field (~8 T) required to fully align the spins, are observed to decouple the chains, and the system enters a disordered intermediate-field phase (IFP). The IFP excitations are in agreement with the predictions of Muller et al. for the 1D S=1/2 HAF, and Talstra and Haldane for the related 1/r^2 chain (the Haldane-Shastry model). This behaviour is inconsistent with linear spin-wave theory.Comment: 10 pages, 4 encapsulated postscript figures, LaTeX, to be published in PRL, e-mail comments to [email protected]

    Determination of the Antiferroquadrupolar Order Parameters in UPd3

    Get PDF
    By combining accurate heat capacity and X-ray resonant scattering results we have resolved the long standing question regarding the nature of the quadrupolar ordered phases in UPd_3. The order parameter of the highest temperature quadrupolar phase has been uniquely determined to be antiphase Q_{zx} in contrast to the previous conjecture of Q_{x^2-y^2} . The azimuthal dependence of the X-ray scattering intensity from the quadrupolar superlattice reflections indicates that the lower temperature phases are described by a superposition of order parameters. The heat capacity features associated with each of the phase transitions characterize their order, which imposes restrictions on the matrix elements of the quadrupolar operators.Comment: 4 pages, 5 figure

    Spin wave spectrum of the quantum ferromagnet on the pyrochlore lattice Lu2V2O7

    Get PDF
    Neutron inelastic scattering has been used to probe the spin dynamics of the quantum (S=1/2) ferromagnet on the pyrochlore lattice Lu2V2O7. Well-defined spin waves are observed at all energies and wavevectors, allowing us to determine the parameters of the Hamiltonian of the system. The data are found to be in excellent overall agreement with a minimal model that includes a nearest- neighbour Heisenberg exchange J = 8:22(2) meV and a Dzyaloshinskii-Moriya interaction (DMI) D =1:5(1) meV. The large DMI term revealed by our study is broadly consistent with the model developed by Onose et al. to explain the magnon Hall effect they observed in Lu2V2O7 [1], although our ratio of D=J = 0:18(1) is roughly half of their value and three times larger than calculated by ab initio methods [2].Comment: 5 pages, 4 figure

    Electric field control of multiferroic domains in Ni3_3V2_2O8_8 imaged by X-ray polarization enhanced topography

    Full text link
    The magnetic structure of multiferroic Ni3_3V2_2O8_8 has been investigated using non-resonant X-ray magnetic scattering. Incident circularly polarized X-rays combined with full polarization analysis of the scattered beam is shown to yield high sensitivity to the components of the cycloidal magnetic order, including their relative phases. New information on the magnetic structure in the ferroelectric phase is obtained, where it is found that the magnetic moments on the "cross-tie" sites are quenched relative to those on the "spine" sites. This implies that the onset of ferroelectricity is associated mainly with spine site magnetic order. We also demonstrate that our technique enables the imaging of multiferroic domains through polarization enhanced topography. This approach is used to image the domains as the sample is cycled by an electric field through its hysteresis loop, revealing the gradual switching of domains without nucleation.Comment: 9 pages, 6 figure

    The J_{eff}=1/2 insulator Sr3Ir2O7 studied by means of angle-resolved photoemission spectroscopy

    Full text link
    The low-energy electronic structure of the J_{eff}=1/2 spin-orbit insulator Sr3Ir2O7 has been studied by means of angle-resolved photoemission spectroscopy. A comparison of the results for bilayer Sr3Ir2O7 with available literature data for the related single-layer compound Sr2IrO4 reveals qualitative similarities and similar J_{eff}=1/2 bandwidths for the two materials, but also pronounced differences in the distribution of the spectral weight. In particuar, photoemission from the J_{eff}=1/2 states appears to be suppressed. Yet, it is found that the Sr3Ir2O7 data are in overall better agreement with band-structure calculations than the data for Sr2IrO4.Comment: 5 pages, 3 figure

    Experimental Proof of a Magnetic Coulomb Phase

    Full text link
    Spin ice materials are magnetic substances in which the spin directions map onto hydrogen positions in water ice. Recently this analogy has been elevated to an electromagnetic equivalence, indicating that the spin ice state is a Coulomb phase, with magnetic monopole excitations analogous to ice's mobile ionic defects. No Coulomb phase has yet been proved in a real magnetic material, as the key experimental signature is difficult to resolve in most systems. Here we measure the scattering of polarised neutrons from the prototypical spin ice Ho2Ti2O7. This enables us to separate different contributions to the magnetic correlations to clearly demonstrate the existence of an almost perfect Coulomb phase in this material. The temperature dependence of the scattering is consistent with the existence of deconfined magnetic monopoles connected by Dirac strings of divergent length.Comment: 18 pages, 4 fig

    Crossover from itinerant to localized magnetic excitations through the metal-insulator transition in NaOsO3_{\text{3}}

    Full text link
    NaOsO3_{\text{3}} undergoes a metal-insulator transition (MIT) at 410 K, concomitant with the onset of antiferromagnetic order. The excitation spectra have been investigated through the MIT by resonant inelastic x-ray scattering (RIXS) at the Os L3_{\text{3}} edge. Low resolution (ΔE∼\Delta E \sim 300 meV) measurements over a wide range of energies reveal that local electronic excitations do not change appreciably through the MIT. This is consistent with a picture in which structural distortions do not drive the MIT. In contrast, high resolution (ΔE∼\Delta E \sim 56 meV) measurements show that the well-defined, low energy magnons in the insulating state weaken and dampen upon approaching the metallic state. Concomitantly, a broad continuum of excitations develops which is well described by the magnetic fluctuations of a nearly antiferromagnetic Fermi liquid. By revealing the continuous evolution of the magnetic quasiparticle spectrum as it changes its character from itinerant to localized, our results provide unprecedented insight into the nature of the MIT in \naoso. In particular, the presence of weak correlations in the paramagnetic phase implies a degree of departure from the ideal Slater limit.Comment: Joint submission with Physical Review Letters [Phys. Rev. Lett. 120, 227203 (2018), accepted version at arXiv:1805.03176]. This article includes further discussion about the calculations performed, models used, and so o
    • …
    corecore