136 research outputs found
Influence of Carbon Concentration on the Superconductivity in MgCxNi3
The influence of carbon concentration on the superconductivity (SC) in
MgCNi has been investigated by measuring the low temperature specific
heat combined with first principles electronic structure calculation. It is
found that the specific heat coefficient of the
superconducting sample () in normal state is twice that of the
non-superconducting one (). The comparison of measured
and the calculated electronic density of states (DOS) shows that the
effective mass renormalization changes remarkably as the carbon concentration
changes. The large mass renormalization for the superconducting sample and the
low (7K) indicate that more than one kind of boson mediated
electron-electron interactions exist in MgCNi.Comment: 4 pages, 4 figure
Nonconstant electronic density of states tunneling inversion for A15 superconductors: Nb3Sn
We re-examine the tunneling data on A15 superconductors by performing a
generalized McMillan-Rowell tunneling inversion that incorporates a nonconstant
electronic density of states obtained from band-structure calculations. For
Nb3Sn, we find that the fit to the experimental data can be slightly improved
by taking into account the sharp structure in the density of states, but it is
likely that such an analysis alone is not enough to completely explain the
superconducting tunneling characteristics of this material. Nevertheless, the
extracted Eliashberg function displays a number of features expected to be
present for the highest quality Nb3Sn samples.Comment: 11 pages, 11 figure
Isotope Effect for the Penetration Depth in Superconductors
We show that various factors can lead to an isotopic dependence of the
penetration depth . Non-adiabaticity (Jahn-Teller crossing) leads to
the isotope effect of the charge carrier concentration and, consequently,
of in doped superconductors such as the cuprates. A general equation
relating the isotope coefficients of and of is presented for
London superconductors. We further show that the presence of magnetic
impurities or a proximity contact also lead to an isotopic dependence of
; the isotope coefficient turns out to be temperature dependent,
, in these cases. The existence of the isotope effect for the
penetration depth is predicted for conventional as well as for high-temperature
superconductors. Various experiments are proposed and/or discussed.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.
Discord in the family Sparidae (Teleostei): divergent phylogeographical patterns across the Atlantic-Mediterranean divide
The Strait of Gibraltar has been proposed to be the divide between two marine biogeographical regions, the Mediterranean Sea and the Northeast Atlantic. Intraspecific studies have shown, for several of the examined species, a reduction of gene flow between the two basins. The present study examines genetic variation at nuclear and mitochondrial loci in five marine teleost species belonging to the family Sparidae. Four samples for each species were analysed spanning the Northeast Atlantic and the Mediterranean. For all individuals 17 allozyme loci were scored and a combined single strand conformation polymorphism-sequencing approach was used to survey approximately 190 bp of the mitochondrial DNA (mtDNA) D-loop region. All five species share similar biological features. For three species, namely Lithognathus mormyrus, Spondyliosoma cantharus, and Dentex dentex, large mtDNA divergence was observed between Atlantic and Mediterranean samples. Little or no mtDNA differentiation was found in the other two species, Pagrus pagrus and Pagellus bogaraveo. Allozyme data revealed strong differentiation when comparing Atlantic and Mediterranean samples of L. mormyrus and D. dentex, moderate for P. pagrus, and no differentiation for P. bogaraveo and S. cantharus. These results provide evidence for a sharp phylogeographical break (sensu Avise) between the Atlantic and the Mediterranean for two (or possibly three) sparid species of the five investigated. At the same time, the obtained results for the other two species raise the question on which ecological/historical factors might have caused the observed discrepancy in the geographical distribution of genetic variation among otherwise biologically similar species.info:eu-repo/semantics/publishedVersio
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
<i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties
Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7.
Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release.
Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue.
Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues â a realisation of the Tycho-Gaia Astrometric Solution (TGAS) â and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of âŒ3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yrâ1 for the proper motions. A systematic component of âŒ0.3 mas should be added to the parallax uncertainties. For the subset of âŒ94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yrâ1. For the secondary astrometric data set, the typical uncertainty of the positions is âŒ10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to âŒ0.03 mag over the magnitude range 5 to 20.7.
Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data
Sloan digital sky survey multicolor observations of GRB 010222
The discovery of an optical counterpart to GRB 010222 (detected by BeppoSAX) was announced 4.4 hr after the burst by Henden. The Sloan Digital Sky Survey's 0.5 m photometric telescope (PT) and 2.5 m survey telescope were used to observe the afterglow of GRB 010222 starting 4.8 hr after the gamma-ray burst. The 0.5 m PT observed the afterglow in five 300 s g*-band exposures over the course of half an hour, measuring a temporal decay rate in this short period of Fv â t-1±0.5. The 2.5 m camera imaged the counterpart nearly simultaneously in five filters (u*, g*, r*, i*, z*), with r* = 18.74 ± 0.02 at 12:10 UT. These multicolor observations, corrected for reddening and the afterglow's temporal decay, are well-fitted by the power law Fv â v-0.90±0.03 with the exception of the u*-band UV flux which is 20% below this slope. We examine possible interpretations of this spectral shape, including source extinction in a star-forming region
First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope
In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved
Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES
- âŠ