2,602 research outputs found
Recommended from our members
A graphic method for depicting horizontal direction data on vertical outcrop photographs
Outcrop photographs which show two-dimensional representations of three-dimensionally dipping surfaces (e.g., bedding planes, cross-bed foresets) are commonly utilized in the description of sedimentary strata. In many instances, accurate depiction of the dip direction of such features is paramount for understanding their interpretation, and for visualizing the true form of three-dimensional bodies (e.g., conceptualizing the form of an architectural element in a cliff-face, preserved as a vertical slice that has been cut oblique to paleocurrent direction). However, as an outcrop photograph often presents information on a vertical plane and directional data refers to a horizontal plane, the accurate co-depiction of both sets of information may be challenging. There is presently no universal method for illustrating such measurements on outcrop photographs: techniques in common usage are often imprecise, and the lack of uniformity hinders comparison between different images. Here we present a method for accurately depicting horizontal direction data on vertical outcrop photographs which permits instant visualization of dip relative to the illustrated outcrop geometry. The method is simple to apply, does not compromise primary data, and is unobtrusive to other visual information within images; thus having utility across a broad spectrum of geological investigations
Recommended from our members
Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary geological outcrops in the pliocene–pleistocene red crag formation, eastern england
It is widely understood that Earth’s stratigraphic record is an incomplete record of time, but the implications that this has for interpreting sedimentary outcrop has received little attention. Here we consider how time is preserved at outcrop using the Neogene-Quaternary Red Crag Formation, England. The Red Crag Formation hosts sedimentological and ichnological proxies that can be used to assess the time taken to accumulate outcrop expressions of strata, as ancient depositional environments fluctuated between states of deposition, erosion and stasis. We use these to estimate how much time is preserved at outcrop scale and find that every outcrop provides only a vanishingly small window onto unanchored weeks to months within the 600-800 ka of ‘Crag-time’. Much of the apparently missing time may be accounted for by the parts of the formation at subcrop, rather than outcrop: stratigraphic time has not been lost, but is hidden. The time-completeness of the Red Crag Formation at outcrop appears analogous to that recorded in much older rock units, implying that direct comparison between strata of all ages is valid and that perceived stratigraphic incompleteness is an inconsequential barrier to viewing the outcrop sedimentary-stratigraphic record as a truthful chronicle of Earth history
Recommended from our members
Evolutionary synchrony of Earth's biosphere and sedimentary-stratigraphic record
The landscapes and seascapes of Earth’s surface provide the theatre for life, but to what extent did the actors build the stage? The role of life in the long-term shaping of the planetary surface needs to be understood to ascertain whether Earth is singular among known rocky planets, and to frame predictions of future changes to the biosphere. Modern geomorphic observations and modelling have made strides in this respect, but an under-utilized lens through which to interrogate these questions resides in the most complete tangible record of our planetary history: the sedimentary-stratigraphic record (SSR). The characteristics of the SSR have been frequently explained with reference to changes in boundary conditions such as relative sea level, climate, and tectonics. Yet despite the fact that the long-term accrual of the SSR was contemporaneous with the evolution of almost all domains of life on Earth, causal explanations related to biological activity have often been overlooked, particularly within siliciclastic strata. This paper explores evidence for the ways in which organisms have influenced the SSR throughout Earth history and emphasizes that further investigation can help lead us towards a mechanistic understanding of how the planetary surface has co-evolved with life. The practicality of discerning life signatures in the SSR is discussed by: 1) distinguishing biologically-dependent versus biologically-influenced sedimentary signatures; 2) emphasizing the importance of determining relative time-length scales of processes and demonstrating how different focal lengths of observation (individual geological outcrops and the complete SSR) can reveal different insights; and 3) promoting an awareness of issues of equifinality and underdetermination that may hinder the recognition of life signatures. Multiple instances of life signatures and their historic range within the SSR are reviewed, with examples covering siliciclastic, biogenic and chemogenic strata, and trigger organisms from across the spectrum of Earth’s extant and ancient life. With this novel perspective, the SSR is recognised as a dynamic archive that expands and complements the fossil and geochemical records that it hosts, rather than simply being a passive repository for them. The SSR is shown to be both the record and the result of long-term evolutionary synchrony between life and planetary surface processes
Short-term evolution of primary sedimentary surface textures (microbial, abiotic, ichnological) on a dry stream bed: modern observations and ancient implications
A wide variety of sub-ripple-scale sedimentary surface textures are known from bedding planes in the sedimentary rock record. Many of these textures were traditionally ascribed an abiotic origin (e.g., due to rain drop impact, adhesion, etc.), but in recent decades the role of microbial mats and biofilms in sculpting and mediating some forms has become increasingly recognized. Microbial sedimentary textures are now well-described and understood from modern tidal environments and biological soil crusts, but descriptions from fluvial settings are less common, despite their known occurrence in ancient alluvium. This paper reports a suite of primary sedimentary surface textures which were observed forming in discrete bodies of standing water in the lower reaches of the ephemeral Murchison River, Western Australia. Microbial sedimentary signatures included bubble impressions (burst and intact) and roll-ups, in addition to reduced horizons. Many of these features exhibited rapid temporal evolution of their morphology in the dry days following an interval of heavy rain. Significantly, these microbial features were witnessed in close spatial proximity to other abiotic and biotic sedimentary surface textures including raindrop impressions, adhesion marks, desiccation cracks, and vertebrate and invertebrate traces. Such proximity of abiotic and microbial sedimentary surface textures is rarely reported from bedding planes in the rock record, but these modern observations emphasize the fact that, particularly in non-marine environments, such structures should not be expected to be mutually exclusive. An appreciation of the fact that primary sedimentary surface textures such as these develop during intervals of stasis in a sedimentation system is crucial to our understanding of their significance and diversity in the rock record.APS was supported by the Natural Environment Research Council [grant number NE/L002507/1]. WJM was supported by Shell International Exploration and Production B.V under Research Framework 604 agreement PT38181
Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites
The use of methylammonium (MA) lead halide perovskites \ce{CH3NH3PbX3} (X=I, Br, Cl) in perovskite solar cells (PSCs) has made great progress in performance efficiency during recent years. However, the rapid decomposition of \ce{MAPbI3} in humid environments hinders outdoor application of PSCs, and thus, a comprehensive understanding of the degradation mechanism is required. To do this, we investigate the effect of water intercalation and hydration of the decomposition and ion migration of \ce{CH3NH3PbX3} using first-principles calculations. We find that water interacts with \ce{PbX6} and MA through hydrogen bonding, and the former interaction enhances gradually, while the latter hardly changes when going from X=I to Br and to Cl. Thermodynamic calculations indicate that water exothermically intercalates into the perovskite, while the water intercalated and monohydrated compounds are stable with respect to decomposition. More importantly, the water intercalation greatly reduces the activation energies for vacancy-mediated ion migration, which become higher going from X=I to Br and to Cl. Our work indicates that hydration of halide perovskites must be avoided to prevent the degradation of PSCs upon moisture exposure
The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells
Methylammonium lead iodide perovskite can make high-efficiency solar cells, which also show an unexplained photocurrent hysteresis dependent on the device-poling history. Here we report quasielastic neutron scattering measurements showing that dipolar CH3NH3+ ions reorientate between the faces, corners or edges of the pseudo-cubic lattice cages in CH3NH3PbI3 crystals with a room temperature residence time of ~14 ps. Free rotation, π-flips and ionic diffusion are ruled out within a 1–200-ps time window. Monte Carlo simulations of interacting CH3NH3+ dipoles realigning within a 3D lattice suggest that the scattering measurements may be explained by the stabilization of CH3NH3+ in either antiferroelectric or ferroelectric domains. Collective realignment of CH3NH3+ to screen a device’s built-in potential could reduce photovoltaic performance. However, we estimate the timescale for a domain wall to traverse a typical device to be ~0.1–1 ms, faster than most observed hysteresis
Wnt/β-catenin Signalling Is Active in a Highly Dynamic Pattern during Development of the Mouse Cerebellum
The adult cerebellum is composed of several distinct cell types with well defined developmental origins. However, the molecular mechanisms that govern the generation of these cell types are only partially resolved. Wnt/β-catenin signalling has a wide variety of roles in generation of the central nervous system, though the specific activity of this pathway during cerebellum development is not well understood. Here, we present data that delineate the spatio-temporal specific pattern of Wnt/β-catenin signaling during mouse cerebellum development between E12.5 and P21. Using the BAT-gal Wnt/β-catenin reporter mouse, we found that Wnt/β-catenin activity is present transiently at the embryonic rhombic lip but not at later stages during the expansion of cell populations that arise from there. At late embryonic and early postnatal stages, Wnt/β-catenin activity shifts to the cerebellar ventricular zone and to cells arising from this germinal centre. Subsequently, the expression pattern becomes progressively restricted to Bergmann glial cells, which show expression of the reporter at P21. These results indicate a variety of potential functions for Wnt/β-catenin activity during cerebellum development
Barcoded DNA-Tag Reporters for Multiplex Cis-Regulatory Analysis
Cis-regulatory DNA sequences causally mediate patterns of gene expression, but efficient experimental analysis of these control systems has remained challenging. Here we develop a new version of “barcoded" DNA-tag reporters, “Nanotags" that permit simultaneous quantitative analysis of up to 130 distinct cis-regulatory modules (CRMs). The activities of these reporters are measured in single experiments by the NanoString RNA counting method and other quantitative procedures. We demonstrate the efficiency of the Nanotag method by simultaneously measuring hourly temporal activities of 126 CRMs from 46 genes in the developing sea urchin embryo, otherwise a virtually impossible task. Nanotags are also used in gene perturbation experiments to reveal cis-regulatory responses of many CRMs at once. Nanotag methodology can be applied to many research areas, ranging from gene regulatory networks to functional and evolutionary genomics
Sonic Hedgehog Is a Chemoattractant for Midbrain Dopaminergic Axons
Midbrain dopaminergic axons project from the substantia nigra (SN) and the ventral tegmental area (VTA) to rostral target tissues, including the striatum, pallidum, and hypothalamus. The axons from the medially located VTA project primarily to more medial target tissues in the forebrain, whereas the more lateral SN axons project to lateral targets including the dorsolateral striatum. This structural diversity underlies the distinct functions of these pathways. Although a number of guidance cues have been implicated in the formation of the distinct axonal projections of the SN and VTA, the molecular basis of their diversity remains unclear. Here we investigate the molecular basis of structural diversity in mDN axonal projections. We find that Sonic Hedgehog (Shh) is expressed at a choice point in the course of the rostral dopaminergic projections. Furthermore, in midbrain explants, dopaminergic projections are attracted to a Shh source. Finally, in mice in which Shh signaling is inactivated during late neuronal development, the most medial dopaminergic projections are deficient
- …