1,386 research outputs found

    Tumor-derived proteins and mitochondrial dysfunction in lung cancer-induced cachexia

    Get PDF
    Lung tumors secrete multiple factors that contribute to cachexia, a severe wasting syndrome that includes loss of muscle mass, weakness, and fatigue. 80% of advanced lung cancer patients experience cachexia, which cannot be reversed by nutritional interventions, diminishes response to and tolerance of cancer treatments, and increases morbidity and mortality. Despite a multitude of clinical trials, there are currently no approved treatments. This deficiency suggests that not all of the factors that contribute to cachexia have been identified. Cancer is frequently accompanied by an increase in cyclooxygenase-2 (COX-2), a hallmark of inflammation. Clinical trials for COX-2 inhibitors have resulted in restoration of muscle mass and decreased fatigue. Along with loss of myofibrillar proteins, cachexia also induces mitochondrial dysfunction, which contributes to fatigue. The amelioration of fatigue by COX-2 inhibition suggests possible alterations to mitochondrial function. We hypothesized that there were unidentified tumor-derived factors that contribute to cachectic wasting and fatigue. Treatment of C2C12 myotubes with Lewis lung cancer-conditioned media (LCM) resulted in increased COX-2 content, myosin loss, and mitochondrial dysfunction. Mass spectrometry revealed 158 confirmed proteins in LCM. We focused on extracellular 14-3-3 proteins because they bind and regulate over 200 known partners. We found that depletion of extracellular 14-3-3 proteins diminished myosin content. CD13, an aminopeptidase, is the proposed receptor for 14-3-3 proteins. Inhibiting aminopeptidases with Bestatin also reduced myosin content. LCM treatment decreased basal and ATP-related mitochondrial respiration, caused a transient rise in reactive oxygen species (ROS), and increased 4-Hydroxynonenal (4-HNE) in both cytosolic and mitochondrial fractions of cell lysates. COX-2 inhibition did not spare myosin content in LCM-treated myotubes, but did alter mitochondrial respiration and cytosolic oxidant levels. Our novel findings show that extracellular 14-3-3 proteins may act as previously unidentified myokines, signaling via aminopeptidases to help maintain muscle mass. We elucidated how LCM alters mitochondrial electron flow, and increases oxidative damage by ROS and 4-HNE. Although successful in clinical trials, COX-2 inhibitors do not appear to spare muscle mass by directly working on skeletal muscle, but did alter mitochondrial function

    Mitochondria Dysfunction in Lung Cancer-Induced Muscle Wasting in C2C12 Myotubes

    Get PDF
    Aims: Cancer cachexia is a syndrome which results in severe loss of muscle mass and marked fatigue. Conditioned media from cachexia-inducing cancer cells triggers metabolic dysfunction in skeletal muscle, including decreased mitochondrial respiration, which may contribute to fatigue. We hypothesized that Lewis lung carcinoma conditioned medium (LCM) would impair the mitochondrial electron transport chain (ETC) and increase production of reactive oxygen species, ultimately leading to decreased mitochondrial respiration. We incubated C2C12 myotubes with LCM for 30 min, 2, 4, 24 or 48 h. We measured protein content by western blot; oxidant production by 2′,7′-dichlorofluorescin diacetate (DCF), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF), and MitoSox; cytochrome c oxidase activity by oxidation of cytochrome c substrate; and oxygen consumption rate (OCR) of intact myotubes by Seahorse XF Analyzer. Results: LCM treatment for 2 or 24 h decreased basal OCR and ATP-related OCR, but did not alter the content of mitochondrial complexes I, III, IV and V. LCM treatment caused a transient rise in reactive oxygen species (ROS). In particular, mitochondrial superoxide (MitoSOX) was elevated at 2 h. 4-Hydroxynonenal, a marker of oxidative stress, was elevated in both cytosolic and mitochondrial fractions of cell lysates after LCM treatment. Conclusion: These data show that lung cancer-conditioned media alters electron flow in the ETC and increases mitochondrial ROS production, both of which may ultimately impair aerobic metabolism and decrease muscle endurance

    Cell Attachment and Osteoinductive Properties of Tissue Engineered, Demineralized Bone Fibers for Bone Void Filling Applications

    Get PDF
    Demineralized bone matrices (DBMs) have been used in a wide variety of clinical applications involving bone repair. Ideally, DBMs should provide osteoinductive and osteoconductive properties, while offering versatile handling capabilities. With this, a novel fiber technology, LifeNet Health-Moldable Demineralized Fibers (L-MDF), was recently developed. Human cortical bone was milled and demineralized to produce L-MDF. Subsequently, the fibers were lyophilized and terminally sterilized using low-dose and low-temperature gamma irradiation. Using L929 mouse fibroblasts, L-MDF underwent cytotoxicity testing to confirm lack of a cytotoxic response. An alamarBlue assay and scanning electron microscopy demonstrated L-MDF supported the cellular function and attachment of bone-marrow mesenchymal stem cells (BM-MSCs). Using an enzyme-linked immunosorbent assay, L-MDF demonstrated BMP-2 and 7 levels similar to those reported in the literature. In vivo data from an athymic mouse model implanted with L-MDF demonstrated the formation of new bone elements and blood vessels. This study showed that L-MDF have the necessary characteristics of a bone void filler to treat osseous defects

    Proteomic Analysis of Media from Lung Cancer Cells Reveals Role of 14-3-3 Proteins in Cachexia

    Get PDF
    Aims: At the time of diagnosis, 60% of lung cancer patients present with cachexia, a severe wasting syndrome that increases morbidity and mortality. Tumors secrete multiple factors that contribute to cachectic muscle wasting, and not all of these factors have been identified. We used Orbitrap electrospray ionization mass spectrometry to identify novel cachexia-inducing candidates in media conditioned with Lewis lung carcinoma cells (LCM). Results: One-hundred and 58 proteins were confirmed in three biological replicates. Thirty-three were identified as secreted proteins, including 14-3-3 proteins, which are highly conserved adaptor proteins known to have over 200 binding partners. We confirmed the presence of extracellular 14-3-3 proteins in LCM via western blot and discovered that LCM contained less 14-3-3 content than media conditioned with C2C12 myotubes. Using a neutralizing antibody, we depleted extracellular 14-3-3 proteins in myotube culture medium, which resulted in diminished myosin content. We identified the proposed receptor for 14-3-3 proteins, CD13, in differentiated C2C12 myotubes and found that inhibiting CD13 via Bestatin also resulted in diminished myosin content. Conclusions: Our novel findings show that extracellular 14-3-3 proteins may act as previously unidentified myokines and may signal via CD13 to help maintain muscle mass

    Multimorbidity in bipolar disorder and under-treatment of cardiovascular disease: a cross sectional study

    Get PDF
    Background: Individuals with serious mental disorders experience poor physical health, especially increased rates of cardiometabolic morbidity and premature morbidity. Recent evidence suggests that individuals with schizophrenia have numerous comorbid physical conditions which may be under-recorded and under-treated but to date very few studies have explored this issue for bipolar disorder. Methods:We conducted a cross-sectional analysis of a dataset of 1,751,841 registered patients within 314 primary-care practices in Scotland, U.K. Bipolar disorder was identified using Read Codes recorded within electronic medical records. Data on 32 common chronic physical conditions were also assessed. Potential prescribing inequalities were evaluated by analyzing prescribing data for coronary heart disease (CHD) and hypertension. Results: Compared to controls, individuals with bipolar disorder were significantly less likely to have no recorded physical conditions (OR 0.59, 95% CI 0.54-0.63) and significantly more likely to have one physical condition (OR 1.27, 95% CI 1.16-1.39), two physical conditions (OR 1.45, 95% CI 1.30-1.62) and three or more physical conditions (OR 1.44, 95% CI 1.30-1.64). People with bipolar disorder also had higher rates of thyroid disorders, chronic kidney disease, chronic pain, chronic obstructive airways disease and diabetes but, surprisingly, lower recorded rates of hypertension and atrial fibrillation. People with bipolar disorder and comorbid CHD or hypertension were significantly more likely to be prescribed no antihypertensive or cholesterol-lowering medications compared to controls, and bipolar individuals with CHD or hypertension were significantly less likely to be on 2 or more antihypertensive agents. Conclusions: Individuals with bipolar disorder are similar to individuals with schizophrenia in having a wide range of comorbid and multiple physical health conditions. They are also less likely than controls to have a primary-care record of cardiovascular conditions such as hypertension and atrial fibrillation. Those with a recorded diagnosis of CHD or hypertension were less likely to be treated with cardiovascular medications and were treated less intensively. This study highlights the high physical healthcare needs of people with bipolar disorder, and provides evidence for a systematic under-recognition and under-treatment of cardiovascular disease in this group

    Impact of socioeconomic deprivation on rate and cause of death in severe mental illness

    Get PDF
    Background: Socioeconomic status has important associations with disease-specific mortality in the general population. Although individuals with Severe Mental Illnesses (SMI) experience significant premature mortality, the relationship between socioeconomic status and mortality in this group remains under investigated.<p></p> Aims: To assess the impact of socioeconomic status on rate and cause of death in individuals with SMI (schizophrenia and bipolar disorder) relative to the local (Glasgow) and wider (Scottish) populations.<p></p> Methods: Cause and age of death during 2006-2010 inclusive for individuals with schizophrenia or bipolar disorder registered on the Glasgow Psychosis Clinical Information System (PsyCIS) were obtained by linkage to the Scottish General Register Office (GRO). Rate and cause of death by socioeconomic status, measured by Scottish Index of Multiple Deprivation (SIMD), were compared to the Glasgow and Scottish populations.<p></p> Results: Death rates were higher in people with SMI across all socioeconomic quintiles compared to the Glasgow and Scottish populations, and persisted when suicide was excluded. Differences were largest in the most deprived quintile (794.6 per 10,000 population vs. 274.7 and 252.4 for Glasgow and Scotland respectively). Cause of death varied by socioeconomic status. For those living in the most deprived quintile, higher drug-related deaths occurred in those with SMI compared to local Glasgow and wider Scottish population rates (12.3% vs. 5.9%, p = <0.001 and 5.1% p = 0.002 respectively). A lower proportion of deaths due to cancer in those with SMI living in the most deprived quintile were also observed, relative to the local Glasgow and wider Scottish populations (12.3% vs. 25.1% p = 0.013 and 26.3% p = <0.001). The proportion of suicides was significantly higher in those with SMI living in the more affluent quintiles relative to Glasgow and Scotland (54.6% vs. 5.8%, p = <0.001 and 5.5%, p = <0.001). Discussion and conclusions: Excess mortality in those with SMI occurred across all socioeconomic quintiles compared to the Glasgow and Scottish populations but was most marked in the most deprived quintiles when suicide was excluded as a cause of death. Further work assessing the impact of socioeconomic status on specific causes of premature mortality in SMI is needed

    Specification of Drosophila Corpora Cardiaca Neuroendocrine Cells from Mesoderm Is Regulated by Notch Signaling

    Get PDF
    Drosophila neuroendocrine cells comprising the corpora cardiaca (CC) are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism

    Intermediate Phenotypes Identify Divergent Pathways to Alzheimer's Disease

    Get PDF
    Background: Recent genetic studies have identified a growing number of loci with suggestive evidence of association with susceptibility to Alzheimer's disease (AD). However, little is known of the role of these candidate genes in influencing intermediate phenotypes associated with a diagnosis of AD, including cognitive decline or AD neuropathologic burden. Methods/Principal Findings: Thirty-two single nucleotide polymorphisms (SNPs) previously implicated in AD susceptibility were genotyped in 414 subjects with both annual clinical evaluation and completed brain autopsies from the Religious Orders Study and the Rush Memory and Aging Project. Regression analyses evaluated the relation of SNP genotypes to continuous measures of AD neuropathology and cognitive function proximate to death. A SNP in the zinc finger protein 224 gene (ZNF224, rs3746319) was associated with both global AD neuropathology (p = 0.009) and global cognition (p = 0.002); whereas, a SNP at the phosphoenolpyruvate carboxykinase locus (PCK1, rs8192708) was selectively associated with global cognition (p = 3.57×10−4). The association of ZNF224 with cognitive impairment was mediated by neurofibrillary tangles, whereas PCK1 largely influenced cognition independent of AD pathology, as well as Lewy bodies and infarcts. Conclusions/Significance: The findings support the association of several loci with AD, and suggest how intermediate phenotypes can enhance analysis of susceptibility loci in this complex genetic disorder

    Expanding the clinical spectrum of hereditary fibrosing poikiloderma with tendon contractures, myopathy and pulmonary fibrosis due to <i>FAM111B </i>mutations

    Get PDF
    BACKGROUND: Hereditary Fibrosing Poikiloderma (HFP) with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP [MIM 615704]) is a very recently described entity of syndromic inherited poikiloderma. Previously by using whole exome sequencing in five families, we identified the causative gene, FAM111B (NM_198947.3), the function of which is still unknown. Our objective in this study was to better define the specific features of POIKTMP through a larger series of patients. METHODS: Clinical and molecular data of two families and eight independent sporadic cases, including six new cases, were collected. RESULTS: Key features consist of: (i) early-onset poikiloderma, hypotrichosis and hypohidrosis; (ii) multiple contractures, in particular triceps surae muscle contractures; (iii) diffuse progressive muscular weakness; (iv) pulmonary fibrosis in adulthood and (v) other features including exocrine pancreatic insufficiency, liver impairment and growth retardation. Muscle magnetic resonance imaging was informative and showed muscle atrophy and fatty infiltration. Histological examination of skeletal muscle revealed extensive fibroadipose tissue infiltration. Microscopy of the skin showed a scleroderma-like aspect with fibrosis and alterations of the elastic network. FAM111B gene analysis identified five different missense variants (two recurrent mutations were found respectively in three and four independent families). All the mutations were predicted to localize in the trypsin-like cysteine/serine peptidase domain of the protein. We suggest gain-of-function or dominant-negative mutations resulting in FAM111B enzymatic activity changes. CONCLUSIONS: HFP with tendon contractures, myopathy and pulmonary fibrosis, is a multisystemic disorder due to autosomal dominant FAM111B mutations. Future functional studies will help in understanding the specific pathological process of this fibrosing disorder
    • …
    corecore