1,379 research outputs found

    Measuring Physical Demands in Basketball: An Explorative Systematic Review of Practices.

    Full text link
    BACKGROUND:Measuring the physical work and resultant acute psychobiological responses of basketball can help to better understand and inform physical preparation models and improve overall athlete health and performance. Recent advancements in training load monitoring solutions have coincided with increases in the literature describing the physical demands of basketball, but there are currently no reviews that summarize all the available basketball research. Additionally, a thorough appraisal of the load monitoring methodologies and measures used in basketball is lacking in the current literature. This type of critical analysis would allow for consistent comparison between studies to better understand physical demands across the sport. OBJECTIVES:The objective of this systematic review was to assess and critically evaluate the methods and technologies used for monitoring physical demands in competitive basketball athletes. We used the term 'training load' to encompass the physical demands of both training and game activities, with the latter assumed to provide a training stimulus as well. This review aimed to critique methodological inconsistencies, establish operational definitions specific to the sport, and make recommendations for basketball training load monitoring practice and reporting within the literature. METHODS:A systematic review of the literature was performed using EBSCO, PubMed, SCOPUS, and Web of Science to identify studies through March 2020. Electronic databases were searched using terms related to basketball and training load. Records were included if they used a competitive basketball population and incorporated a measure of training load. This systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO Registration # CRD42019123603), and approved under the National Basketball Association (NBA) Health Related Research Policy. RESULTS:Electronic and manual searches identified 122 papers that met the inclusion criteria. These studies reported the physical demands of basketball during training (n = 56), competition (n = 36), and both training and competition (n = 30). Physical demands were quantified with a measure of internal training load (n = 52), external training load (n = 29), or both internal and external measures (n = 41). These studies examined males (n = 76), females (n = 34), both male and female (n = 9), and a combination of youth (i.e. under 18 years, n = 37), adults (i.e. 18 years or older, n = 77), and both adults and youth (n = 4). Inconsistencies related to the reporting of competition level, methodology for recording duration, participant inclusion criteria, and validity of measurement systems were identified as key factors relating to the reporting of physical demands in basketball and summarized for each study. CONCLUSIONS:This review comprehensively evaluated the current body of literature related to training load monitoring in basketball. Within this literature, there is a clear lack of alignment in applied practices and methodological framework, and with only small data sets and short study periods available at this time, it is not possible to draw definitive conclusions about the true physical demands of basketball. A detailed understanding of modern technologies in basketball is also lacking, and we provide specific guidelines for defining and applying duration measurement methodologies, vetting the validity and reliability of measurement tools, and classifying competition level in basketball to address some of the identified knowledge gaps. Creating alignment in best-practice basketball research methodology, terminology and reporting may lead to a more robust understanding of the physical demands associated with the sport, thereby allowing for exploration of other research areas (e.g. injury, performance), and improved understanding and decision making in applying these methods directly with basketball athletes

    Understanding 'monitoring' data-the association between measured stressors and athlete responses within a holistic basketball performance framework.

    Get PDF
    This study examined associations between cumulative training load, travel demands and recovery days with athlete-reported outcome measures (AROMs) and countermovement jump (CMJ) performance in professional basketball. Retrospective analysis was performed on data collected from 23 players (mean±SD: age = 24.7±2.5 years, height = 198.3±7.6 cm, body mass = 98.1±9.0 kg, wingspan = 206.8±8.4 cm) from 2018-2020 in the National Basketball Association G-League. Linear mixed models were used to describe variation in AROMs and CMJ data in relation to cumulative training load (previous 3- and 10-days), hours travelled (previous 3- and 10-day), days away from the team's home city, recovery days (i.e., no travel/minimal on-court activity) and individual factors (e.g., age, fatigue, soreness). Cumulative 3-day training load had negative associations with fatigue, soreness, and sleep, while increased recovery days were associated with improved soreness scores. Increases in hours travelled and days spent away from home over 10 days were associated with increased sleep quality and duration. Cumulative training load over 3 and 10 days, hours travelled and days away from home city were all associated with changes in CMJ performance during the eccentric phase. The interaction of on-court and travel related stressors combined with individual factors is complex, meaning that multiple athletes response measures are needed to understand fatigue and recovery cycles. Our findings support the utility of the response measures presented (i.e., CMJ and AROMs), but this is not an exhaustive battery and practitioners should consider what measures may best inform training periodization within the context of their environment/sport

    An extragalactic supernebula confined by gravity

    Full text link
    Little is known about the origins of the giant star clusters known as globular clusters. How can hundreds of thousands of stars form simultaneously in a volume only a few light years across the distance of the sun to its nearest neighbor? Radiation pressure and winds from luminous young stars should disperse the star-forming gas and disrupt the formation of the cluster. Globular clusters in our Galaxy cannot provide answers; they are billions of years old. Here we report the measurement of infrared hydrogen recombination lines from a young, forming super star cluster in the dwarf galaxy, NGC 5253. The lines arise in gas heated by a cluster of an estimated million stars, so young that it is still enshrouded in gas and dust, hidden from optical view. We verify that the cluster contains 4000-6000 massive, hot "O" stars. Our discovery that the gases within the cluster are bound by gravity may explain why these windy and luminous O stars have not yet blown away the gases to allow the cluster to emerge from its birth cocoon. Young clusters in "starbursting" galaxies in the local and distant universe may be similarly gravitationally confined and cloaked from view.Comment: Letter to Natur
    • …
    corecore