10,622 research outputs found

    Photoionization cross section calculations for the halogen-like ions Kr+^+ and Xe+^+

    Full text link
    Photoionization cross sections calculations on the halogen-like ions; Kr+^+ and Xe+^+ have been performed for a photon energy range from each ion threshold to 15 eV, using large-scale close-coupling calculations within the Dirac-Coulomb R-matrix approximation. The results from our theoretical work are compared with recent measurements made at the ASTRID merged-beam set-up at the University of Aarhus in Denmark and from the Fourier transform ion cyclotron resonance (FT-ICR) trap method at the SOLEIL synchrotron radiation facility in Saint-Aubin, France and the Advanced Light Soure (ALS). For each of these complex ions our theoretical cross section results over the photon energy range investigated are seen to be in excellent agreement with experiment. Resonance energy positions and quantum defects of the prominent Rydberg resonances series identified in the spectra are compared with experiment for these complex halogen like-ions.Comment: Accepted for publicatio

    K-shell x-ray spectroscopy of atomic nitrogen

    Full text link
    Absolute {\it K}-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Due to the difficulty of creating a target of neutral atomic nitrogen, no high-resolution {\it K}-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s1s \rightarrow npnp resonance features throughout the threshold region. An experimental value of 409.64 ±\pm 0.02 eV was determined for the {\it K}-shell binding energy.Comment: 4 pages, 2 graphs, 1 tabl

    Adaptive Bayesian decision feedback equalizer for dispersive mobile radio channels

    Full text link
    The paper investigates adaptive equalization of time dispersive mobile ratio fading channels and develops a robust high performance Bayesian decision feedback equalizer (DFE). The characteristics and implementation aspects of this Bayesian DFE are analyzed, and its performance is compared with those of the conventional symbol or fractional spaced DFE and the maximum likelihood sequence estimator (MLSE). In terms of computational complexity, the adaptive Bayesian DFE is slightly more complex than the conventional DFE but is much simpler than the adaptive MLSE. In terms of error rate in symbol detection, the adaptive Bayesian DFE outperforms the conventional DFE dramatically. Moreover, for severely fading multipath channels, the adaptive MLSE exhibits significant degradation from the theoretical optimal performance and becomes inferior to the adaptive Bayesian DFE

    PSR J0737-3039B: A probe of radio pulsar emission heights

    Get PDF
    In the double pulsar system PSR J0737-3039A/B the strong wind produced by pulsar A distorts the magnetosphere of pulsar B. The influence of these distortions on the orbital-dependent emission properties of pulsar B can be used to determine the location of the coherent radio emission generation region in the pulsar magnetosphere. Using a model of the wind-distorted magnetosphere of pulsar B and the well defined geometrical parameters of the system, we determine the minimum emission height to be ~ 20 neutron star radii in the two bright orbital longitude regions. We can determine the maximum emission height by accounting for the amount of deflection of the polar field line with respect to the magnetic axis using the analytical magnetic reconnection model of Dungey and the semi-empirical numerical model of Tsyganenko. Both of these models estimate the maximum emission height to be ~ 2500 neutron star radii. The minimum and maximum emission heights we calculate are consistent with those estimated for normal isolated pulsars.Comment: 29 pages, 14 figures, Accepted by ApJ on 3 March 201

    An Active-Sterile Neutrino Transformation Solution for r-Process Nucleosynthesis

    Full text link
    We discuss how matter-enhanced active-sterile neutrino transformation in both neutrino and antineutrino channels could enable the production of the rapid neutron capture (r-process) nuclei in neutrino-heated supernova ejecta. In this scheme the lightest sterile neutrino would be heavier than the electron neutrino and split from it by a vacuum mass-squared difference roughly between 3 and 70 eV2^2 and vacuum mixing angle given by sin22θes>104\sin^2 2\theta_{es} > 10^{-4}.Comment: 27 pages plus twelve figures. Submitted to Phys. Rev.

    Modeling the non-recycled Fermi gamma-ray pulsar population

    Get PDF
    We use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L depends on the period P and the period derivative \dot{P}. We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L on P and \dot{P}, including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is L \propto P^{-a} \dot{P}^{b} where a=1.36\pm0.03 and b=0.44\pm0.02, similar to but not identical to the commonly assumed L \propto \sqrt{\dot{E}} \propto P^{-1.5} \dot{P}^{0.5}. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7{\pi} for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2{\sigma} upper limit on the average braking index and a 2{\sigma} lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 X 10^{10} G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the two-year sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected five-year sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions significantly depend on our model assumptions.Comment: 26 pages, 10 figures, Accepted by ApJ on 8 September 201
    corecore