197 research outputs found

    Estimates of Presumed Population Immunity to SARS-CoV-2 by State in the United States, August 2021

    Get PDF
    Background: Information is needed to monitor progress toward a level of population immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sufficient to disrupt viral transmission. We estimated the percentage of the US population with presumed immunity to SARS-CoV-2 due to vaccination, natural infection, or both as of August 26, 2021. Methods: Publicly available data as of August 26, 2021, from the Centers for Disease Control and Prevention were used to calculate presumed population immunity by state. Seroprevalence data were used to estimate the percentage of the population previously infected with SARS-CoV-2, with adjustments for underreporting. Vaccination coverage data for both fully and partially vaccinated persons were used to calculate presumed immunity from vaccination. Finally, we estimated the percentage of the total population in each state with presumed immunity to SARS-CoV-2, with a sensitivity analysis to account for waning immunity, and compared these estimates with a range of population immunity thresholds. Results: In our main analysis, which was the most optimistic scenario, presumed population immunity varied among states (43.1% to 70.6%), with 19 states with ≤60% of their population having been infected or vaccinated. Four states had presumed immunity greater than thresholds estimated to be sufficient to disrupt transmission of less infectious variants (67%), and none were greater than the threshold estimated for more infectious variants (≥78%). Conclusions: The United States remains a distance below the threshold sufficient to disrupt viral transmission, with some states remarkably low. As more infectious variants emerge, it is critical that vaccination efforts intensify across all states and ages for which the vaccines are approved

    Superconducting properties of RuSr2GdCu2O8 studied by SQUID magnetometry

    Full text link
    For polycrystalline RuSr2GdCu2O8 (Ru-1212), distinct peaks have been reported in d.c. magnetization in the superconducting state of the sample. Sr2GdRuO6 (Sr-2116), the precursor for the preparation of Ru-1212, shows similar peaks in the same temperature regime. Based on measurements performed on both bulk and powdered samples of Ru-1212 and Sr-2116, we exclude the possibility, that the observed behavior of the magnetization of Ru-1212 is due to Sr-2116 impurities. The effect is related to the superconductivity of Ru-1212, but it is not an intrinsic property of this compound. We provide evidence that the observation of magnetization peaks in the superconducting state of Ru-1212 is due to flux motion generated by the movement of the sample in an inhomogeneous field, during the measurement in the SQUID magnetometer. We propose several tests, that help to decide, whether the features observed in a SQUID magnetization measurement of Ru-1212 represent a property of the compound or not.Comment: 22 pages, 9 figure

    Stochastic Production Of Kink-Antikink Pairs In The Presence Of An Oscillating Background

    Get PDF
    We numerically investigate the production of kink-antikink pairs in a (1+1)(1+1) dimensional Ď•4\phi^4 field theory subject to white noise and periodic driving. The twin effects of noise and periodic driving acting in conjunction lead to considerable enhancement in the kink density compared to the thermal equilibrium value, for low dissipation coefficients and for a specific range of frequencies of the oscillating background. The dependence of the kink-density on the temperature of the heat bath, the amplitude of the oscillating background and value of the dissipation coefficient is also investigated. An interesting feature of our result is that kink-antikink production occurs even though the system always remains in the broken symmetry phase.Comment: Revtex, 21 pages including 7 figures; more references adde

    Lectures on the functional renormalization group method

    Full text link
    These introductory notes are about functional renormalization group equations and some of their applications. It is emphasised that the applicability of this method extends well beyond critical systems, it actually provides us a general purpose algorithm to solve strongly coupled quantum field theories. The renormalization group equation of F. Wegner and A. Houghton is shown to resum the loop-expansion. Another version, due to J. Polchinski, is obtained by the method of collective coordinates and can be used for the resummation of the perturbation series. The genuinely non-perturbative evolution equation is obtained in a manner reminiscent of the Schwinger-Dyson equations. Two variants of this scheme are presented where the scale which determines the order of the successive elimination of the modes is extracted from external and internal spaces. The renormalization of composite operators is discussed briefly as an alternative way to arrive at the renormalization group equation. The scaling laws and fixed points are considered from local and global points of view. Instability induced renormalization and new scaling laws are shown to occur in the symmetry broken phase of the scalar theory. The flattening of the effective potential of a compact variable is demonstrated in case of the sine-Gordon model. Finally, a manifestly gauge invariant evolution equation is given for QED.Comment: 47 pages, 11 figures, final versio

    High-time Resolution Astrophysics and Pulsars

    Full text link
    The discovery of pulsars in 1968 heralded an era where the temporal characteristics of detectors had to be reassessed. Up to this point detector integration times would normally be measured in minutes rather seconds and definitely not on sub-second time scales. At the start of the 21st century pulsar observations are still pushing the limits of detector telescope capabilities. Flux variations on times scales less than 1 nsec have been observed during giant radio pulses. Pulsar studies over the next 10 to 20 years will require instruments with time resolutions down to microseconds and below, high-quantum quantum efficiency, reasonable energy resolution and sensitive to circular and linear polarisation of stochastic signals. This chapter is review of temporally resolved optical observations of pulsars. It concludes with estimates of the observability of pulsars with both existing telescopes and into the ELT era.Comment: Review; 21 pages, 5 figures, 86 references. Book chapter to appear in: D.Phelan, O.Ryan & A.Shearer, eds.: High Time Resolution Astrophysics (Astrophysics and Space Science Library, Springer, 2007). The original publication will be available at http://www.springerlink.co

    Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies

    Get PDF
    CD20 has proven to be an excellent target for the treatment of B-cell lymphoma, first for the chimeric monoclonal antibody rituximab (Rituxan™), and more recently for the radiolabelled antibodies Y-90 ibritumomab tiuxetan (Zevalin™) and I-131 tositumomab (Bexxar™). Radiation therapy effects are due to beta emissions with path lengths of 1–5 mm; gamma radiation emitted by I-131 is the only radiation safety issue for either product. Dose-limiting toxicity for both radiolabelled antibodies is reversible bone marrow suppression. They produce response rates of 70%–90% in low-grade and follicular lymphoma and 40%–50% in transformed low-grade or intermediate-grade lymphomas. Both products produce higher response rates than related unlabelled antibodies, and both are highly active in patients who are relatively resistant to rituximab-based therapy. Median duration of response to a single course of treatment is about 1 year with complete remission rates that last 2 years or longer in about 25% of patients. Clinical trials suggest that anti- CD20 radioimmunotherapy is superior to total body irradiation in patients undergoing stem cell supported therapy for B-cell lymphoma, and that it is a safe and efficacious modality when used as consolidation therapy following chemotherapy. Among cytotoxic treatment options, current evidence suggests that one course of anti-CD20 radioimmunotherapy is as efficacious as six to eight cycles of combination chemotherapy. A major question that persists is how effective these agents are in the setting of rituximab- refractory lymphoma. These products have been underutilised because of the complexity of treatment coordination and concerns regarding reimbursement
    • …
    corecore