103 research outputs found

    Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping

    Full text link
    Explicit and semi-explicit geometric integration schemes for dissipative perturbations of Hamiltonian systems are analyzed. The dissipation is characterized by a small parameter ϵ\epsilon, and the schemes under study preserve the symplectic structure in the case ϵ=0\epsilon=0. In the case 0<ϵ10<\epsilon\ll 1 the energy dissipation rate is shown to be asymptotically correct by backward error analysis. Theoretical results on monotone decrease of the modified Hamiltonian function for small enough step sizes are given. Further, an analysis proving near conservation of relative equilibria for small enough step sizes is conducted. Numerical examples, verifying the analyses, are given for a planar pendulum and an elastic 3--D pendulum. The results are superior in comparison with a conventional explicit Runge-Kutta method of the same order

    Variational Integrators for Almost-Integrable Systems

    Full text link
    We construct several variational integrators--integrators based on a discrete variational principle--for systems with Lagrangians of the form L = L_A + epsilon L_B, with epsilon << 1, where L_A describes an integrable system. These integrators exploit that epsilon << 1 to increase their accuracy by constructing discrete Lagrangians based on the assumption that the integrator trajectory is close to that of the integrable system. Several of the integrators we present are equivalent to well-known symplectic integrators for the equivalent perturbed Hamiltonian systems, but their construction and error analysis is significantly simpler in the variational framework. One novel method we present, involving a weighted time-averaging of the perturbing terms, removes all errors from the integration at O(epsilon). This last method is implicit, and involves evaluating a potentially expensive time-integral, but for some systems and some error tolerances it can significantly outperform traditional simulation methods.Comment: 14 pages, 4 figures. Version 2: added informative example; as accepted by Celestial Mechanics and Dynamical Astronom

    On asymptotic nonlocal symmetry of nonlinear Schr\"odinger equations

    Full text link
    A concept of asymptotic symmetry is introduced which is based on a definition of symmetry as a reducibility property relative to a corresponding invariant ansatz. It is shown that the nonlocal Lorentz invariance of the free-particle Schr\"odinger equation, discovered by Fushchych and Segeda in 1977, can be extended to Galilei-invariant equations for free particles with arbitrary spin and, with our definition of asymptotic symmetry, to many nonlinear Schr\"odinger equations. An important class of solutions of the free Schr\"odinger equation with improved smoothing properties is obtained

    Short time evolved wave functions for solving quantum many-body problems

    Get PDF
    The exact ground state of a strongly interacting quantum many-body system can be obtained by evolving a trial state with finite overlap with the ground state to infinite imaginary time. In this work, we use a newly discovered fourth order positive factorization scheme which requires knowing both the potential and its gradients. We show that the resultaing fourth order wave function alone, without further iterations, gives an excellent description of strongly interacting quantum systems such as liquid 4He, comparable to the best variational results in the literature.Comment: 5 pages, 3 figures, 1 tabl

    On the universality of anomalous one-dimensional heat conductivity

    Full text link
    In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long--time correlation of the corresponding currents. The effective asymptotic behaviour is addressed with reference to the problem of heat transport in 1d crystals, modeled by chains of classical nonlinear oscillators. Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal conductivity diverges with the system size LL as κLα\kappa \propto L^\alpha. However, the exponent α\alpha deviates systematically from the theoretical prediction α=1/3\alpha=1/3 proposed in a recent paper [O. Narayan, S. Ramaswamy, Phys. Rev. Lett. {\bf 89}, 200601 (2002)].Comment: 4 pages, submitted to Phys.Rev.

    Finding Exponential Product Formulas of Higher Orders

    Full text link
    In the present article, we review a continual effort on generalization of the Trotter formula to higher-order exponential product formulas. The exponential product formula is a good and useful approximant, particularly because it conserves important symmetries of the system dynamics. We focuse on two algorithms of constructing higher-order exponential product formulas. The first is the fractal decomposition, where we construct higher-order formulas recursively. The second is to make use of the quantum analysis, where we compute higher-order correction terms directly. As interludes, we also have described the decomposition of symplectic integrators, the approximation of time-ordered exponentials, and the perturbational composition.Comment: 22 pages, 9 figures. To be published in the conference proceedings ''Quantum Annealing and Other Optimization Methods," eds. B.K.Chakrabarti and A.Das (Springer, Heidelberg

    On the multisymplecticity of partitioned Runge-Kutta and splitting methods

    No full text
    Although Runge-Kutta and partitioned Runge-Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger equation in detail, for which the previously known multisymplectic integrators are fully implicit and based on the (second order) box scheme, and construct well-defined, explicit integrators, of various orders, with local discrete multisymplectic conservation laws, based on partitioned Runge-Kutta methods. We also show that two popular explicit splitting methods are multisymplectic

    La médecine et le monopole / par le docteur Romain Vigouroux

    Get PDF
    Avec mode text
    corecore