103 research outputs found
Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping
Explicit and semi-explicit geometric integration schemes for dissipative
perturbations of Hamiltonian systems are analyzed. The dissipation is
characterized by a small parameter , and the schemes under study
preserve the symplectic structure in the case . In the case
the energy dissipation rate is shown to be asymptotically
correct by backward error analysis. Theoretical results on monotone decrease of
the modified Hamiltonian function for small enough step sizes are given.
Further, an analysis proving near conservation of relative equilibria for small
enough step sizes is conducted.
Numerical examples, verifying the analyses, are given for a planar pendulum
and an elastic 3--D pendulum. The results are superior in comparison with a
conventional explicit Runge-Kutta method of the same order
Variational Integrators for Almost-Integrable Systems
We construct several variational integrators--integrators based on a discrete
variational principle--for systems with Lagrangians of the form L = L_A +
epsilon L_B, with epsilon << 1, where L_A describes an integrable system. These
integrators exploit that epsilon << 1 to increase their accuracy by
constructing discrete Lagrangians based on the assumption that the integrator
trajectory is close to that of the integrable system. Several of the
integrators we present are equivalent to well-known symplectic integrators for
the equivalent perturbed Hamiltonian systems, but their construction and error
analysis is significantly simpler in the variational framework. One novel
method we present, involving a weighted time-averaging of the perturbing terms,
removes all errors from the integration at O(epsilon). This last method is
implicit, and involves evaluating a potentially expensive time-integral, but
for some systems and some error tolerances it can significantly outperform
traditional simulation methods.Comment: 14 pages, 4 figures. Version 2: added informative example; as
accepted by Celestial Mechanics and Dynamical Astronom
On asymptotic nonlocal symmetry of nonlinear Schr\"odinger equations
A concept of asymptotic symmetry is introduced which is based on a definition
of symmetry as a reducibility property relative to a corresponding invariant
ansatz. It is shown that the nonlocal Lorentz invariance of the free-particle
Schr\"odinger equation, discovered by Fushchych and Segeda in 1977, can be
extended to Galilei-invariant equations for free particles with arbitrary spin
and, with our definition of asymptotic symmetry, to many nonlinear
Schr\"odinger equations. An important class of solutions of the free
Schr\"odinger equation with improved smoothing properties is obtained
Short time evolved wave functions for solving quantum many-body problems
The exact ground state of a strongly interacting quantum many-body system can
be obtained by evolving a trial state with finite overlap with the ground state
to infinite imaginary time. In this work, we use a newly discovered fourth
order positive factorization scheme which requires knowing both the potential
and its gradients. We show that the resultaing fourth order wave function
alone, without further iterations, gives an excellent description of strongly
interacting quantum systems such as liquid 4He, comparable to the best
variational results in the literature.Comment: 5 pages, 3 figures, 1 tabl
On the universality of anomalous one-dimensional heat conductivity
In one and two dimensions, transport coefficients may diverge in the
thermodynamic limit due to long--time correlation of the corresponding
currents. The effective asymptotic behaviour is addressed with reference to the
problem of heat transport in 1d crystals, modeled by chains of classical
nonlinear oscillators. Extensive accurate equilibrium and nonequilibrium
numerical simulations confirm that the finite-size thermal conductivity
diverges with the system size as . However, the
exponent deviates systematically from the theoretical prediction
proposed in a recent paper [O. Narayan, S. Ramaswamy, Phys. Rev.
Lett. {\bf 89}, 200601 (2002)].Comment: 4 pages, submitted to Phys.Rev.
Finding Exponential Product Formulas of Higher Orders
In the present article, we review a continual effort on generalization of the
Trotter formula to higher-order exponential product formulas. The exponential
product formula is a good and useful approximant, particularly because it
conserves important symmetries of the system dynamics. We focuse on two
algorithms of constructing higher-order exponential product formulas. The first
is the fractal decomposition, where we construct higher-order formulas
recursively. The second is to make use of the quantum analysis, where we
compute higher-order correction terms directly. As interludes, we also have
described the decomposition of symplectic integrators, the approximation of
time-ordered exponentials, and the perturbational composition.Comment: 22 pages, 9 figures. To be published in the conference proceedings
''Quantum Annealing and Other Optimization Methods," eds. B.K.Chakrabarti and
A.Das (Springer, Heidelberg
On the multisymplecticity of partitioned Runge-Kutta and splitting methods
Although Runge-Kutta and partitioned Runge-Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger equation in detail, for which the previously known multisymplectic integrators are fully implicit and based on the (second order) box scheme, and construct well-defined, explicit integrators, of various orders, with local discrete multisymplectic conservation laws, based on partitioned Runge-Kutta methods. We also show that two popular explicit splitting methods are multisymplectic
- …