2,340 research outputs found

    Ultracold atoms confined in an optical lattice plus parabolic potential: a closed-form approach

    Full text link
    We discuss interacting and non-interacting one dimensional atomic systems trapped in an optical lattice plus a parabolic potential. We show that, in the tight-binding approximation, the non-interacting problem is exactly solvable in terms of Mathieu functions. We use the analytic solutions to study the collective oscillations of ideal bosonic and fermionic ensembles induced by small displacements of the parabolic potential. We treat the interacting boson problem by numerical diagonalization of the Bose-Hubbard Hamiltonian. From analysis of the dependence upon lattice depth of the low-energy excitation spectrum of the interacting system, we consider the problems of "fermionization" of a Bose gas, and the superfluid-Mott insulator transition. The spectrum of the noninteracting system turns out to provide a useful guide to understanding the collective oscillations of the interacting system, throughout a large and experimentally relevant parameter regime.Comment: 19 pages, 15 figures Minor modification were done and new references were adde

    A note on the moduli-induced gravitino problem

    Full text link
    The cosmological moduli problem has been recently reconsidered. Papers [1,2] show that even heavy moduli (m_\phi > 10^5 GeV) can be a problem for cosmology if a branching ratio of the modulus into gravitini is large. In this paper, we discuss the tachyonic decay of moduli into the Standard Model's degrees of freedom, e.g. Higgs particles, as a resolution to the moduli-induced gravitino problem. Rough estimates on model dependent parameters set a lower bound on the allowed moduli at around 10^8 ~ 10^9 GeV.Comment: 6 pages, references added, identical to the published versio

    Hooke's law correlation in two-electron systems

    Full text link
    We study the properties of the Hooke's law correlation energy (\Ec), defined as the correlation energy when two electrons interact {\em via} a harmonic potential in a DD-dimensional space. More precisely, we investigate the 1S^1S ground state properties of two model systems: the Moshinsky atom (in which the electrons move in a quadratic potential) and the spherium model (in which they move on the surface of a sphere). A comparison with their Coulombic counterparts is made, which highlights the main differences of the \Ec in both the weakly and strongly correlated limits. Moreover, we show that the Schr\"odinger equation of the spherium model is exactly solvable for two values of the dimension (D=1and3D = 1 \text{and} 3), and that the exact wave function is based on Mathieu functions.Comment: 7 pages, 5 figure

    Quantum corrections from a path integral over reparametrizations

    Full text link
    We study the path integral over reparametrizations that has been proposed as an ansatz for the Wilson loops in the large-NN QCD and reproduces the area law in the classical limit of large loops. We show that a semiclassical expansion for a rectangular loop captures the L\"uscher term associated with d=26d=26 dimensions and propose a modification of the ansatz which reproduces the L\"uscher term in other dimensions, which is observed in lattice QCD. We repeat the calculation for an outstretched ellipse advocating the emergence of an analog of the L\"uscher term and verify this result by a direct computation of the determinant of the Laplace operator and the conformal anomaly

    Preheating after N-flation

    Full text link
    We study preheating in N-flation, assuming the Mar\v{c}enko-Pastur mass distribution, equal energy initial conditions at the beginning of inflation and equal axion-matter couplings, where matter is taken to be a single, massless bosonic field. By numerical analysis we find that preheating via parametric resonance is suppressed, indicating that the old theory of perturbative preheating is applicable. While the tensor-to-scalar ratio, the non-Gaussianity parameters and the scalar spectral index computed for N-flation are similar to those in single field inflation (at least within an observationally viable parameter region), our results suggest that the physics of preheating can differ significantly from the single field case.Comment: 14 pages, 14 figures, references added, fixed typo

    Faraday waves in binary non-miscible Bose-Einstein condensates

    Get PDF
    We show by extensive numerical simulations and analytical variational calculations that elongated binary non-miscible Bose-Einstein condensates subject to periodic modulations of the radial confinement exhibit a Faraday instability similar to that seen in one-component condensates. Considering the hyperfine states of 87^{87}Rb condensates, we show that there are two experimentally relevant stationary state configurations: the one in which the components form a dark-bright symbiotic pair (the ground state of the system), and the one in which the components are segregated (first excited state). For each of these two configurations, we show numerically that far from resonances the Faraday waves excited in the two components are of similar periods, emerge simultaneously, and do not impact the dynamics of the bulk of the condensate. We derive analytically the period of the Faraday waves using a variational treatment of the coupled Gross-Pitaevskii equations combined with a Mathieu-type analysis for the selection mechanism of the excited waves. Finally, we show that for a modulation frequency close to twice that of the radial trapping, the emergent surface waves fade out in favor of a forceful collective mode that turns the two condensate components miscible.Comment: 13 pages, 10 figure

    Excitation of a Kaluza-Klein mode by parametric resonance

    Get PDF
    In this paper we investigate a parametric resonance phenomenon of a Kaluza-Klein mode in a DD-dimensional generalized Kaluza-Klein theory. As the origin of the parametric resonance we consider a small oscillation of a scale of the compactification around a today's value of it. To make our arguments definite and for simplicity we consider two classes of models of the compactification: those by SdS_{d} (d=D−4d=D-4) and those by Sd1×Sd2S_{d_{1}}\times S_{d_{2}} (d1≥d2d_1\ge d_2, d1+d2=D−4d_{1}+d_{2}=D-4). For these models we show that parametric resonance can occur for the Kaluza-Klein mode. After that, we give formulas of a creation rate and a number of created quanta of the Kaluza-Klein mode due to the parametric resonance, taking into account the first and the second resonance band. By using the formulas we calculate those quantities for each model of the compactification. Finally we give conditions for the parametric resonance to be efficient and discuss cosmological implications.Comment: 36 pages, Latex file, Accepted for publication in Physical Review

    Fractional-Period Excitations in Continuum Periodic Systems

    Get PDF
    We investigate the generation of fractional-period states in continuum periodic systems. As an example, we consider a Bose-Einstein condensate confined in an optical-lattice potential. We show that when the potential is turned on non-adiabatically, the system explores a number of transient states whose periodicity is a fraction of that of the lattice. We illustrate the origin of fractional-period states analytically by treating them as resonant states of a parametrically forced Duffing oscillator and discuss their transient nature and potential observability.Comment: 10 pages, 6 figures (some with multiple parts); revised version: minor clarifications of a couple points, to appear in Physical Review

    Accurate Transfer Maps for Realistic Beamline Elements: Part I, Straight Elements

    Full text link
    The behavior of orbits in charged-particle beam transport systems, including both linear and circular accelerators as well as final focus sections and spectrometers, can depend sensitively on nonlinear fringe-field and high-order-multipole effects in the various beam-line elements. The inclusion of these effects requires a detailed and realistic model of the interior and fringe fields, including their high spatial derivatives. A collection of surface fitting methods has been developed for extracting this information accurately from 3-dimensional field data on a grid, as provided by various 3-dimensional finite-element field codes. Based on these realistic field models, Lie or other methods may be used to compute accurate design orbits and accurate transfer maps about these orbits. Part I of this work presents a treatment of straight-axis magnetic elements, while Part II will treat bending dipoles with large sagitta. An exactly-soluble but numerically challenging model field is used to provide a rigorous collection of performance benchmarks.Comment: Accepted to PRST-AB. Changes: minor figure modifications, reference added, typos corrected
    • …
    corecore