37 research outputs found

    A Novel Animal Model of Borrelia recurrentis Louse-Borne Relapsing Fever Borreliosis Using Immunodeficient Mice

    Get PDF
    Louse-borne relapsing fever (LBRF) borreliosis is caused by Borrelia recurrentis, and it is a deadly although treatable disease that is endemic in the Horn of Africa but has epidemic potential. Research on LBRF has been severely hampered because successful infection with B. recurrentis has been achieved only in primates (i.e., not in other laboratory or domestic animals). Here, we present the first non-primate animal model of LBRF, using SCID (-B, -T cells) and SCID BEIGE (-B, -T, -NK cells) immunocompromised mice. These animals were infected with B. recurrentis A11 or A17, or with B. duttonii 1120K3 as controls. B. recurrentis caused a relatively mild but persistent infection in SCID and SCID BEIGE mice, but did not proliferate in NUDE (-T) and BALB/c (wild-type) mice. B. duttonii was infectious but not lethal in all animals. These findings demonstrate that the immune response can limit relapsing fever even in the absence of humoral defense mechanisms. To study the significance of phagocytic cells in this context, we induced systemic depletion of such cells in the experimental mice by injecting them with clodronate liposomes, which resulted in uncontrolled B. duttonii growth and a one-hundred-fold increase in B. recurrentis titers in blood. This observation highlights the role of macrophages and other phagocytes in controlling relapsing fever infection. B. recurrentis evolved from B. duttonii to become a primate-specific pathogen that has lost the ability to infect immunocompetent rodents, probably through genetic degeneration. Here, we describe a novel animal model of B. recurrentis based on B- and T-cell-deficient mice, which we believe will be very valuable in future research on LBRF. Our study also reveals the importance of B-cells and phagocytes in controlling relapsing fever infection

    NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi

    No full text
    Borrelia burgdorferi is the etiologic agent of Lyme disease, a multisystem inflammatory disorder that principally targets the skin, joints, heart, and nervous system. The role of T lymphocytes in the development of chronic inflammation resulting from B. burgdorferi infection has been controversial. We previously showed that natural killer T (NKT) cells with an invariant (i) TCR α chain (iNKT cells) recognize glycolipids from B. burgdorferi, but did not establish an in vivo role for iNKT cells in Lyme disease pathogenesis. Here, we evaluate the importance of iNKT cells for host defense against these pathogenic spirochetes by using Vα14i NKT cell-deficient (Jα18−/−) BALB/c mice. On tick inoculation with B. burgdorferi, Jα18−/− mice exhibited more severe and prolonged arthritis as well as a reduced ability to clear spirochetes from infected tissues. Vα14i NKT cell deficiency also resulted in increased production of antibodies directed against both B. burgdorferi protein antigens and borrelial diacylglycerols; the latter finding demonstrates that anti-glycolipid antibody production does not require cognate help from Vα14i NKT cells. Vα14i NKT cells in infected wild-type mice expressed surface activation markers and produced IFNγ in vivo after infection, suggesting a participatory role for this unique population in cellular immunity. Our data are consistent with the hypothesis that the antigen-specific activation of Vα14i NKT cells is important for the prevention of persistent joint inflammation and spirochete clearance, and they counter the long-standing notion that humoral rather than cellular immunity is sufficient to facilitate Lyme disease resolution

    CD4(+) T Helper 1 Cells Facilitate Regression of Murine Lyme Carditis

    No full text
    Murine Lyme borreliosis, caused by infection with the spirochete Borrelia burgdorferi, results in acute arthritis and carditis that regress as a result of B. burgdorferi-specific immune responses. B. burgdorferi-specific antibodies can attenuate arthritis in mice deficient in both B cells and T cells but have no effect on carditis. Because macrophages comprise the principal immune cell in carditis, T-cell responses that augment cell-mediated immunity may be important for carditis regression. To investigate this hypothesis, we examined the course of Lyme carditis in mice selectively deficient in B cells or αβ T cells. Our results show that carditis regresses in B-cell-deficient B10.A(k) mice but not in αβ T-cell-deficient mice, independently of the mouse strain background. Despite prominent macrophage infiltrates, hearts from B. burgdorferi-infected αβ T-cell-deficient mice had less mRNA for tumor necrosis factor alpha as measured by reverse transcription-PCR compared to infected control mice. Anti-inflammatory cytokine mRNA levels were equivalent. Adoptive transfer of gamma interferon-secreting CD4(+) T cells into infected αβ T-cell-deficient mice promoted carditis resolution. These results show that αβ T cells can promote resolution of murine Lyme carditis and are the first demonstration of a beneficial role for CD4(+) T helper 1 cells in this disease

    Propagation of Rat Parvovirus in Thymic Lymphoma Cell Line C58(NT)D and Subsequent Appearance of a Resistant Cell Clone after Lytic Infection

    No full text
    Rat parvovirus (RPV) is nonpathogenic in rats but causes persistent lymphocytotropic infection. We found that RPV was propagated in rat thymic lymphoma cell line C58(NT)D and induced apoptosis. Interestingly, a resistant subclone, C58(NT)D/R, from surviving cells after lytic infection had differentiated phenotypic modifications, such as increased cell adherence, resistance to apoptosis, and suppressed tumorigenicity
    corecore