412 research outputs found

    Chromosome Axis Defects Induce a Checkpoint-Mediated Delay and Interchromosomal Effect on Crossing Over during Drosophila Meiosis

    Get PDF
    Crossovers mediate the accurate segregation of homologous chromosomes during meiosis. The widely conserved pch2 gene of Drosophila melanogaster is required for a pachytene checkpoint that delays prophase progression when genes necessary for DSB repair and crossover formation are defective. However, the underlying process that the pachytene checkpoint is monitoring remains unclear. Here we have investigated the relationship between chromosome structure and the pachytene checkpoint and show that disruptions in chromosome axis formation, caused by mutations in axis components or chromosome rearrangements, trigger a pch2-dependent delay. Accordingly, the global increase in crossovers caused by chromosome rearrangements, known as the “interchromosomal effect of crossing over,” is also dependent on pch2. Checkpoint-mediated effects require the histone deacetylase Sir2, revealing a conserved functional connection between PCH2 and Sir2 in monitoring meiotic events from Saccharomyces cerevisiae to a metazoan. These findings suggest a model in which the pachytene checkpoint monitors the structure of chromosome axes and may function to promote an optimal number of crossovers

    Hydrothermally Emplaced, Lower Mississippian, Tripolitic Chert and Its Possible Relationship to the Tri-State Lead-Zinc Mining District

    Get PDF
    Across the southern Ozark Region, northern Arkansas, southwestern Missouri, and northeastern Oklahoma, exposures of the Lower Mississippian Boone Formation and its equivalents exhibit well-developed tripolitic chert that has been mined, more or less continuously, for at least 80 years. The tripolitic chert is a replacement of an interval within the basal portion of the upper Boone Formation in Arkansas and Oklahoma, and equivalent to the Elsey Formation in Missouri. The movement of silica-rich, hydrothermal fluids appears to have been much like that of a confined aquifer. It followed the basal upper Boone Formation (Arkansas) = Elsey Formation (Missouri) and was bound below by an impermeable interval at the top of the lower Boone Formation (Arkansas) = Reeds Spring Formation (Missouri), and above by the base of the upper Boone Formation (Arkansas) = Burlington-Keokuk (Missouri). The first hydrothermal event incompletely silicified the basal upper Boone = Elsey Formation. After leaching of the remnant carbonate, thus forming the tripolitic chert, a second hydrothermal event deposited terminated and doubly terminated quartz crystals, and druse in the tripolitic chert voids. This hydrothermal event may have pro-duced the Mississippi Valley-Type (MVT) lead-zinc deposits in northeast Oklahoma and southwestern Missouri. The famous deposits at Picher, Oklahoma, and Joplin, Missouri, appear to be positioned in the apparent path of the hydrothermal fluid migration. While timing of these hydrothermal events is unclear, they may reflect lateral secretion produced by the Ouachita Orogeny in the Late Pennsylvanian

    The Drosophila Zinc Finger Protein Trade Embargo Is Required for Double Strand Break Formation in Meiosis

    Get PDF
    Homologous recombination in meiosis is initiated by the programmed induction of double strand breaks (DSBs). Although the Drosophila Spo11 ortholog Mei-W68 is required for the induction of DSBs during meiotic prophase, only one other protein (Mei-P22) has been shown to be required for Mei-W68 to exert this function. We show here that the chromatin-associated protein Trade Embargo (Trem), a C2H2 zinc finger protein, is required to localize Mei-P22 to discrete foci on meiotic chromosomes, and thus to promote the formation of DSBs, making Trem the earliest known function in the process of DSB formation in Drosophila oocytes. We speculate that Trem may act by either directing the binding of Mei-P22 to preferred sites of DSB formation or by altering chromatin structure in a manner that allows Mei-P22 to form foci

    Life remade: critical animation in the digital age

    Get PDF
    Introduction to Special Issue of animation: an interdisciplinary journal. Animation and contemporary life are enmeshed like never before. A growing number of the media images we consume are in animated form (from fully animated features to CGI laden blockbusters and advertisements); recourse to common animation software and aesthetic approaches significantly blur the lines between previously distinct artistic and design practices (from video games, to special effects, to architecture and contemporary art); and through techniques of computational modelling and visualization, animation is increasingly fundamental to processes of knowledge production and the creation of various modes or elements of life. This appears therefore to be a particularly 'critical' moment to ponder animation's expanded cultural and political role. This special issue also provides an opportunity to consider animation's own powers of critique – the ways in which the digital animated image is increasingly being deployed explicitly as a means of intervening in social and political arenas ranging from human rights advocacy to ecological activism. And finally, we hope this collection of essays serves to further the already rich examination of the politics of more traditional forms of animation in the current digital age. This special issue thus builds upon recent scholarship that has already begun to contend with animation's expanded presence and its inherent political and critical significance..

    A Yeast Two-Hybrid Screen for SYP-3 Interactors Identifies SYP-4, a Component Required for Synaptonemal Complex Assembly and Chiasma Formation in Caenorhabditis elegans Meiosis

    Get PDF
    The proper assembly of the synaptonemal complex (SC) between homologs is critical to ensure accurate meiotic chromosome segregation. The SC is a meiotic tripartite structure present from yeast to humans, comprised of proteins assembled along the axes of the chromosomes and central region (CR) proteins that bridge the two chromosome axes. Here we identify SYP-4 as a novel structural component of the SC in Caenorhabditis elegans. SYP-4 interacts in a yeast two-hybrid assay with SYP-3, one of components of the CR of the SC, and is localized at the interface between homologs during meiosis. SYP-4 is essential for the localization of SYP-1, SYP-2, and SYP-3 CR proteins onto chromosomes, thereby playing a crucial role in the stabilization of pairing interactions between homologous chromosomes. In the absence of SYP-4, the levels of recombination intermediates, as indicated by RAD-51 foci, are elevated in mid-prophase nuclei, and crossover recombination events are significantly reduced. The lack of chiasmata observed in syp-4 mutants supports the elevated levels of chromosome nondisjunction manifested in high embryonic lethality. Altogether our findings place SYP-4 as a central player in SC formation and broaden our understanding of the structure of the SC and its assembly

    Chromosome Painting Reveals Asynaptic Full Alignment of Homologs and HIM-8–Dependent Remodeling of X Chromosome Territories during Caenorhabditis elegans Meiosis

    Get PDF
    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners

    A High Throughput Genetic Screen Identifies New Early Meiotic Recombination Functions in Arabidopsis thaliana

    Get PDF
    Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes

    CRA-1 Uncovers a Double-Strand Break-Dependent Pathway Promoting the Assembly of Central Region Proteins on Chromosome Axes During C. elegans Meiosis

    Get PDF
    The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans

    Repression of Floral Meristem Fate Is Crucial in Shaping Tomato Inflorescence

    Get PDF
    Tomato is an important crop and hence there is a great interest in understanding the genetic basis of its flowering. Several genes have been identified by mutations and we constructed a set of novel double mutants to understand how these genes interact to shape the inflorescence. It was previously suggested that the branching of the tomato inflorescence depends on the gradual transition from inflorescence meristem (IM) to flower meristem (FM): the extension of this time window allows IM to branch, as seen in the compound inflorescence (s) and falsiflora (fa) mutants that are impaired in FM maturation. We report here that JOINTLESS (J), which encodes a MADS-box protein of the same clade than SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) in Arabidopsis, interferes with this timing and delays FM maturation, therefore promoting IM fate. This was inferred from the fact that j mutation suppresses the high branching inflorescence phenotype of s and fa mutants and was further supported by the expression pattern of J, which is expressed more strongly in IM than in FM. Most interestingly, FA - the orthologue of the Arabidopsis LEAFY (LFY) gene - shows the complementary expression pattern and is more active in FM than in IM. Loss of J function causes premature termination of flower formation in the inflorescence and its reversion to a vegetative program. This phenotype is enhanced in the absence of systemic florigenic protein, encoded by the SINGLE FLOWER TRUSS (SFT) gene, the tomato orthologue of FLOWERING LOCUS T (FT). These results suggest that the formation of an inflorescence in tomato requires the interaction of J and a target of SFT in the meristem, for repressing FA activity and FM fate in the IM
    corecore