220 research outputs found
Affective educational games and the evolving teaching experience
Teaching methods must adapt to learners’ expectations. Computer game-based learning environments enable learning through experimentation and are inherently motivational. However, for identifying when learners achieve learning goals and providing suitable feedback, Intelligent Tutoring Systems must be used. Recognizing the learner’s affective state enables educational games to improve the learner’s experience or to distinguish relevant emotions. This chapter discusses the creation of an affective student model that infers the learner’s emotions from cognitive and motivational variables through observable behavior. The control-value theory of ‘achievement emotions’ provides a basis for this work. A Probabilistic Relational Models (PRMs) approach for affective student modeling, which is based on Dynamic Bayesian Networks, is discussed. The approach is tested through a prototyping study based on Wizard-of-Oz experiments and preliminary results are presented. The affective student model will be incorporated into PlayPhysics, an emotional game-based learning environment for teaching Physics. PRMs facilitate the design of student models with Bayesian Networks. The effectiveness of PlayPhysics will be evaluated by comparing the students’ learning gains and learning efficiencies.</jats:p
Shaping innovations in long-term care for stroke survivors with multimorbidity through stakeholder engagement
BACKGROUND:Stroke, like many long-term conditions, tends to be managed in isolation of its associated risk factors and multimorbidity. With increasing access to clinical and research data there is the potential to combine data from a variety of sources to inform interventions to improve healthcare. A 'Learning Health System' (LHS) is an innovative model of care which transforms integrated data into knowledge to improve healthcare. The objective of this study is to develop a process of engaging stakeholders in the use of clinical and research data to co-produce potential solutions, informed by a LHS, to improve long-term care for stroke survivors with multimorbidity. METHODS:We used a stakeholder engagement study design informed by co-production principles to engage stakeholders, including service users, carers, general practitioners and other health and social care professionals, service managers, commissioners of services, policy makers, third sector representatives and researchers. Over a 10 month period we used a range of methods including stakeholder group meetings, focus groups, nominal group techniques (priority setting and consensus building) and interviews. Qualitative data were recorded, transcribed and analysed thematically. RESULTS:37 participants took part in the study. The concept of how data might drive intervention development was difficult to convey and understand. The engagement process led to four priority areas for needs for data and information being identified by stakeholders: 1) improving continuity of care; 2) improving management of mental health consequences; 3) better access to health and social care; and 4) targeting multiple risk factors. These priorities informed preliminary design interventions. The final choice of intervention was agreed by consensus, informed by consideration of the gap in evidence and local service provision, and availability of robust data. This shaped a co-produced decision support tool to improve secondary prevention after stroke for further development. CONCLUSIONS:Stakeholder engagement to identify data-driven solutions is feasible but requires resources. While a number of potential interventions were identified, the final choice rested not just on stakeholder priorities but also on data availability. Further work is required to evaluate the impact and implementation of data-driven interventions for long-term stroke survivors
- …