22 research outputs found

    Global gradients of coral exposure to environmental stresses and implications for local management

    Get PDF
    Background: The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings: This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance: Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions are achieved through global negotiations

    Shifting base-lines, declining coral cover, and the erosion of reef resilience: comment on Sweatman et al. (2011)

    No full text
    Formal monitoring of the Great Barrier Reef was initiated in 1986 in response to the clear scientific evidence (and growing public concern) over the loss of corals caused by two protracted outbreaks of crown-of thorns starfish, which began in 1962 and 1979. Using monitoring data from manta tows along and across the Great Barrier Reef, Sweatman et al. (Coral Reefs 30:521–531, 2011) show that coral cover after these outbreaks declined further from 28 to 22% between 1986 and 2004. Pointing to the current levels of protection of the Great Barrier Reef, they state that earlier estimates of losses of coral cover since the early 1960s have been exaggerated. However, the loss of close to one-quarter of the coral cover over the past two decades represents an average loss of 0.34% cover per year across the whole GBR after 1986, which is very similar to previously reported rates of annual loss measured over a longer timeframe. The heaviest recent losses have occurred on inshore and mid-shelf reefs, which Sweatman et al. (Coral Reefs 30:521–531, 2011) attribute to a natural cycle of disturbance and recovery. But there has been very limited recovery. While coral cover has increased for short periods on some individual reefs, it has declined sharply on many more to produce the observed system-wide trend of declining cover. Close to 40% of coral cover on inner reefs has been lost since 1986. Of particular significance is the new evidence that coral cover has remained unchanged or declined further from a low 1986 baseline in 28 out of 29 sub-regions of the Great Barrier Reef, indicating a gradual erosion of resilience that is impeding the capacity of this huge reef system to return towards its earlier condition. This result, and other clear evidence of widespread incremental degradation from overfishing, pollution, and climate change, calls for action rather than complacency or denial

    Changes in forest area along stream networks in an agricultural catchment of the Great Barrier Reef Lagoon

    No full text
    Scenes from the series of multispectral sensors on the Landsat satellites were used to map recent changes (between 1972 and 2004) in forest cover within and adjacent to stream networks of an intensively farmed region of the southern Great Barrier Reef catchment (Australia). Unsupervised ISODATA classifications of Tasseled-Cap transformed data (at 57 m ground resolution) mapped forest and cleared areas within 150 m of Pisoneer catchment waterways with 72.2% overall accuracy (K = 0.469), when adjusted for the size of each class. Although the user's accuracy was higher for the forest class (82.1 ± 8.4% at α = 0.05), large errors of commission (34.2 ± 8.3%) substantially affected map accuracy for the cleared class. The main reasons for misclassification include: (1) failure to discriminate narrowly vegetated riparian strips; (2) misregistration of scenes; and (3) spectral similarity of ground cover. Error matrix probabilities were used to adjust the mapped area of classes, resulting in a decline of forest cover by 12.3% and increase of clearing by 18.5% (22.4 km change; 95% confidence interval: 14.3-29.6 km ) between 1972 and 2004. Despite the mapping errors, Landsat data were able to identify broad patterns of land cover change that were verified from aerial photography. Most of the forest losses occurred in open forest to woodland habitat dominated by Eucalyptus, Corymbia, and Lophostemon species, which were largely replaced by sugarcane cropping. Melaleuca communities were similarly affected, though they have a much smaller distribution in the catchment

    Water quality degradation of coastal waterways in the Wet Tropics, Australia

    No full text
    The Wet Tropics region of north Queensland has outstanding environmental values, contains the highest biological diversity in Australia, and borders the Great Barrier Reef. Comparable to other tropical areas worldwide, increasing urban and agricultural development in the Wet Tropics has caused concerns with respect to ecosystem degradation due to poor water quality in freshwater reaches and marine environments. Key issues currently identified in the Wet Tropics include erosion and subsequent stream turbidity and sedimentation, nutrients from erosion and fertiliser use and pesticide residue contamination. Issues such as reduced dissolved oxygen, acid sulfate soil runoff, and biological factors such as weed infestation, reduced and degraded riparian vegetation condition, and flow modification have also been identified. These issues mainly arise from agricultural activities with lesser effects from urban development. Management of pollution to improve in-stream water quality requires a long-term monitoring program to characterize water quality conditions over different flows and seasons. This type of monitoring program is underway; however, the focus is on the Great Barrier Reef and does not fully consider freshwater ecosystem health. Another major issue is the lack of a fully developed conceptual framework that links changed land use to water quality and subsequently to aquatic ecosystem health. In this paper, we establish the current level of water quality knowledge in the Wet Tropics while outlining a conceptual framework connecting changing land management practices and their effects to water quality and to ecosystem health
    corecore