1,315 research outputs found

    Quantization of the First-Order Two-Dimensional Einstein-Hilbert Action

    Full text link
    A canonical analysis of the first-order two-dimensional Einstein-Hilbert action has shown it to have no physical degrees of freedom and to possess an unusual gauge symmetry with a symmetric field ξμν\xi_{\mu\nu} acting as a gauge function. Some consequences of this symmetry are explored. The action is quantized and it is shown that all loop diagrams beyond one-loop order vanish. Furthermore, explicit calculation of the one-loop two-point function shows that it too vanishes, with the contribution of the ghost loop cancelling that of the ``graviton'' loop

    On the correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations

    Get PDF
    The relationship between Koopman mode decomposition, resolvent mode decomposition and exact invariant solutions of the Navier-Stokes equations is clarified. The correspondence rests upon the invariance of the system operators under symmetry operations such as spatial translation. The usual interpretation of the Koopman operator is generalised to permit combinations of such operations, in addition to translation in time. This invariance is related to the spectrum of a spatio-temporal Koopman operator, which has a travelling wave interpretation. The relationship leads to a generalisation of dynamic mode decomposition, in which symmetry operations are applied to restrict the dynamic modes to span a subspace subject to those symmetries. The resolvent is interpreted as the mapping between the Koopman modes of the Reynolds stress divergence and the velocity field. It is shown that the singular vectors of the resolvent (the resolvent modes) are the optimal basis in which to express the velocity field Koopman modes where the latter are not a priori known

    A critical layer model for turbulent pipe flow

    Get PDF
    A model-based description of the scaling and radial location of turbulent fluctuations in turbulent pipe flow is presented and used to illuminate the scaling behaviour of the very large scale motions. The model is derived by treating the nonlinearity in the perturbation equation (involving the Reynolds stress) as an unknown forcing, yielding a linear relationship between the velocity field response and this nonlinearity. We do not assume small perturbations. We examine propagating modes, permitting comparison of our results to experimental data, and identify the steady component of the velocity field that varies only in the wall-normal direction as the turbulent mean profile. The "optimal" forcing shape, that gives the largest velocity response, is assumed to lead to modes that will be dominant and hence observed in turbulent pipe flow. An investigation of the most amplified velocity response at a given wavenumber-frequency combination reveals critical layer-like behaviour reminiscent of the neutrally stable solutions of the Orr-Sommerfeld equation in linearly unstable flow. Two distinct regions in the flow where the influence of viscosity becomes important can be identified, namely a wall layer that scales with R+1/2R^{+1/2} and a critical layer, where the propagation velocity is equal to the local mean velocity, that scales with R+2/3R^{+2/3} in pipe flow. This framework appears to be consistent with several scaling results in wall turbulence and reveals a mechanism by which the effects of viscosity can extend well beyond the immediate vicinity of the wall.Comment: Submitted to the Journal of Fluid Mechanics and currently under revie

    On the design of optimal compliant walls for turbulence control

    Get PDF
    This paper employs the theoretical framework developed by Luhar et al. (J. Fluid Mech., 768, 415-441) to consider the design of compliant walls for turbulent skin friction reduction. Specifically, the effects of simple spring-damper walls are contrasted with the effects of more complex walls incorporating tension, stiffness and anisotropy. In addition, varying mass ratios are tested to provide insight into differences between aerodynamic and hydrodynamic applications. Despite the differing physical responses, all the walls tested exhibit some important common features. First, the effect of the walls (positive or negative) is greatest at conditions close to resonance, with sharp transitions in performance across the resonant frequency or phase speed. Second, compliant walls are predicted to have a more pronounced effect on slower-moving structures because such structures generally have larger wall-pressure signatures. Third, two-dimensional (spanwise constant) structures are particularly susceptible to further amplification. These features are consistent with many previous experiments and simulations, suggesting that mitigating the rise of such two-dimensional structures is essential to designing performance-improving walls. For instance, it is shown that further amplification of such large-scale two-dimensional structures explains why the optimal anisotropic walls identified by Fukagata et al. via DNS (J. Turb., 9, 1-17) only led to drag reduction in very small domains. The above observations are used to develop design and methodology guidelines for future research on compliant walls

    A foundation for analytical developments in the logarithmic region of turbulent channels

    Get PDF
    An analytical framework for studying the logarithmic region of turbulent channels is formulated. We build on recent findings (Moarref et al., J. Fluid Mech., 734, 2013) that the velocity fluctuations in the logarithmic region can be decomposed into a weighted sum of geometrically self-similar resolvent modes. The resolvent modes and the weights represent the linear amplification mechanisms and the scaling influence of the nonlinear interactions in the Navier-Stokes equations (NSE), respectively (McKeon & Sharma, J. Fluid Mech., 658, 2010). Originating from the NSE, this framework provides an analytical support for Townsend's attached-eddy model. Our main result is that self-similarity enables order reduction in modeling the logarithmic region by establishing a quantitative link between the self-similar structures and the velocity spectra. Specifically, the energy intensities, the Reynolds stresses, and the energy budget are expressed in terms of the resolvent modes with speeds corresponding to the top of the logarithmic region. The weights of the triad modes -the modes that directly interact via the quadratic nonlinearity in the NSE- are coupled via the interaction coefficients that depend solely on the resolvent modes (McKeon et al., Phys. Fluids, 25, 2013). We use the hierarchies of self-similar modes in the logarithmic region to extend the notion of triad modes to triad hierarchies. It is shown that the interaction coefficients for the triad modes that belong to a triad hierarchy follow an exponential function. The combination of these findings can be used to better understand the dynamics and interaction of flow structures in the logarithmic region. The compatibility of the proposed model with theoretical and experimental results is further discussed.Comment: Submitted to J. Fluid Mec

    A Massive Renormalizable Abelian Gauge Theory in 2+1 Dimensions

    Get PDF
    The standard formulation of a massive Abelian vector field in 2+12+1 dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in its place we consider a Chern-Simons kinetic term plus a Stuekelberg mass term. In this latter model, we still have a massive vector field, but now the interaction with a charged spinor field is renormalizable (as opposed to super renormalizable). By choosing an appropriate gauge fixing term, the Stuekelberg auxiliary scalar field decouples from the vector field. The one-loop spinor self energy is computed using operator regularization, a technique which respects the three dimensional character of the antisymmetric tensor ϵαβγ\epsilon_{\alpha\beta\gamma}. This method is used to evaluate the vector self energy to two-loop order; it is found to vanish showing that the beta function is zero to two-loop order. The canonical structure of the model is examined using the Dirac constraint formalism.Comment: LaTeX, 17 pages, expanded reference list and discussion of relationship to previous wor

    On coherent structure in wall turbulence

    Get PDF
    A new theory of coherent structure in wall turbulence is presented. The theory is the first to predict packets of hairpin vortices and other structure in turbulence, and their dynamics, based on an analysis of the Navier–Stokes equations, under an assumption of a turbulent mean profile. The assumption of the turbulent mean acts as a restriction on the class of possible structures. It is shown that the coherent structure is a manifestation of essentially low-dimensional flow dynamics, arising from a critical-layer mechanism. Using the decomposition presented in McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), complex coherent structure is recreated from minimal superpositions of response modes predicted by the analysis, which take the form of radially varying travelling waves. The leading modes effectively constitute a low-dimensional description of the turbulent flow, which is optimal in the sense of describing the resonant effects around the critical layer and which minimally predicts all types of structure. The approach is general for the full range of scales. By way of example, simple combinations of these modes are offered that predict hairpins and modulated hairpin packets. The example combinations are chosen to represent observed structure, consistent with the nonlinear triadic interaction for wavenumbers that is required for self-interaction of structures. The combination of the three leading response modes at streamwise wavenumbers 6; 1; 7 and spanwise wavenumbers ±6; ±6; ±12, respectively, with phase velocity 2/3, is understood to represent a turbulence ‘kernel’, which, it is proposed, constitutes a self-exciting process analogous to the near-wall cycle. Together, these interactions explain how the mode combinations may self-organize and self-sustain to produce experimentally observed structure. The phase interaction also leads to insight into skewness and correlation results known in the literature. It is also shown that the very large-scale motions act to organize hairpin-like structures such that they co-locate with areas of low streamwise momentum, by a mechanism of locally altering the shear profile. These energetic streamwise structures arise naturally from the resolvent analysis, rather than by a summation of hairpin packets. In addition, these packets are modulated through a ‘beat’ effect. The relationship between Taylor’s hypothesis and coherence is discussed, and both are shown to be the consequence of the localization of the response modes around the critical layer. A pleasing link is made to the classical laminar inviscid theory, whereby the essential mechanism underlying the hairpin vortex is captured by two obliquely interacting Kelvin–Stuart (cat’s eye) vortices. Evidence for the theory is presented based on comparison with observations of structure in turbulent flow reported in the experimental and numerical simulation literature and with exact solutions reported in the transitional literature
    corecore