36 research outputs found
Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions.
Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.Work in DRSâs laboratory is supported by the the European Union, Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council and Wellcome Trust. Work in ARVâs laboratory is supported by the Medical Research Council and Wellcome Trust. Work in DJH's laboratory is supported by the Medical Research Council under grant ML/L007266/1. All calculations were performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/) provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and were funded by the EPSRC under grants EP/F032773/1 and EP/J017639/1. GJM and ARV are affiliated with PhoreMost Ltd, Cambridge. We thank Alicia Higueruelo and John Skidmore for helpful discussions.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.chembiol.2015.04.01
Diversity-oriented synthesis as a tool for identifying new modulators of mitosis.
The synthesis of diverse three-dimensional libraries has become of paramount importance for obtaining better leads for drug discovery. Such libraries are predicted to fare better than traditional compound collections in phenotypic screens and against difficult targets. Herein we report the diversity-oriented synthesis of a compound library using rhodium carbenoid chemistry to access structurally diverse three-dimensional molecules and show that they access biologically relevant areas of chemical space using cheminformatic analysis. High-content screening of this library for antimitotic activity followed by chemical modification identified 'Dosabulin', which causes mitotic arrest and cancer cell death by apoptosis. Its mechanism of action is determined to be microtubule depolymerization, and the compound is shown to not significantly affect vinblastine binding to tubulin; however, experiments suggest binding to a site vicinal or allosteric to Colchicine. This work validates the combination of diversity-oriented synthesis and phenotypic screening as a strategy for the discovery of biologically relevant chemical entities.This is the author's accepted manuscript. The final version was published in Nature Communications here: http://www.nature.com/ncomms/2014/140117/ncomms4155/full/ncomms4155.html#affil-auth
Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8âș cellâdependent mechanism
Notch signaling plays a fundamental role in determining the outcome of differentiation processes in many tissues. Notch signaling has been implicated in T versus B cell lineage commitment, thymic differentiation, and bone marrow hematopoietic precursor renewal and differentiation. Notch receptors and their ligands are also expressed on the surface of mature lymphocytes and APCs, but the effects of Notch signaling in the peripheral immune system remain poorly defined. The aim of the studies reported here was to investigate the effects of signaling through the Notch receptor using a ligand of the Delta-like family. We show that Notch ligation in the mature immune system markedly decreases responses to transplantation antigens. Constitutive expression of Delta-like 1 on alloantigen-bearing cells renders them nonimmunogenic and able to induce specific unresponsiveness to a challenge with the same alloantigen, even in the form of a cardiac allograft. These effects could be reversed by depletion of CD8âș cells at the time of transplantation. Ligation of Notch on splenic CD8âș cells results in a dramatic decrease in IFN-Îł with a concomitant enhancement of IL-10 production, suggesting that Notch signaling can alter the differentiation potential of CD8âș cells. These data implicate Notch signaling in regulation of peripheral immunity and suggest a novel approach for manipulating deleterious immune responses
Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2.
The essential mitotic kinase Aurora A (AURKA) is controlled during cell cycle progression via two distinct mechanisms. Following activation loop autophosphorylation early in mitosis when it localizes to centrosomes, AURKA is allosterically activated on the mitotic spindle via binding to the microtubule-associated protein, TPX2. Here, we report the discovery of AurkinA, a novel chemical inhibitor of the AURKA-TPX2 interaction, which acts via an unexpected structural mechanism to inhibit AURKA activity and mitotic localization. In crystal structures, AurkinA binds to a hydrophobic pocket (the 'Y pocket') that normally accommodates a conserved Tyr-Ser-Tyr motif from TPX2, blocking the AURKA-TPX2 interaction. AurkinA binding to the Y- pocket induces structural changes in AURKA that inhibit catalytic activity in vitro and in cells, without affecting ATP binding to the active site, defining a novel mechanism of allosteric inhibition. Consistent with this mechanism, cells exposed to AurkinA mislocalise AURKA from mitotic spindle microtubules. Thus, our findings provide fresh insight into the catalytic mechanism of AURKA, and identify a key structural feature as the target for a new class of dual-mode AURKA inhibitors, with implications for the chemical biology and selective therapeutic targeting of structurally related kinases.We are grateful for the access and support at beamlines i02, i03 and i04-1 at Diamond Light Source at Harwell, UK (proposal MX9007 and MX9537) and at beamline Proxima1 at the SOLEIL Synchrotron, Gif-sur-Yvette, France. We are grateful for access and support from the X-ray and biophysics facilities (Dept. of Biochemistry) and the screening/imaging facility (MRC Cancer Unit). M.J. was supported by a Cancer Research UK studentship held in the labs of DS and ARV, PS and MR by a Wellcome Trust Strategic Award to ARV and MH, and DJH, BH, AJN and GM by grants from the UK Medical Research Council to ARV.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep2852
LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal.
CONTEXT: Aldosterone synthesis and cellularity in the human adrenal zona glomerulosa (ZG) is sparse and patchy, presumably due to salt excess. The frequency of somatic mutations causing aldosterone-producing adenomas (APAs) may be a consequence of protection from cell loss by constitutive aldosterone production. OBJECTIVE: The objective of the study was to delineate a process in human ZG, which may regulate both aldosterone production and cell turnover. DESIGN: This study included a comparison of 20 pairs of ZG and zona fasciculata transcriptomes from adrenals adjacent to an APA (n = 13) or a pheochromocytoma (n = 7). INTERVENTIONS: Interventions included an overexpression of the top ZG gene (LGR5) or stimulation by its ligand (R-spondin-3). MAIN OUTCOME MEASURES: A transcriptome profile of ZG and zona fasciculata and aldosterone production, cell kinetic measurements, and Wnt signaling activity of LGR5 transfected or R-spondin-3-stimulated cells were measured. RESULTS: LGR5 was the top gene up-regulated in ZG (25-fold). The gene for its cognate ligand R-spondin-3, RSPO3, was 5-fold up-regulated. In total, 18 genes associated with the Wnt pathway were greater than 2-fold up-regulated. ZG selectivity of LGR5, and its absence in most APAs, were confirmed by quantitative PCR and immunohistochemistry. Both R-spondin-3 stimulation and LGR5 transfection of human adrenal cells suppressed aldosterone production. There was reduced proliferation and increased apoptosis of transfected cells, and the noncanonical activator protein-1/Jun pathway was stimulated more than the canonical Wnt pathway (3-fold vs 1.3-fold). ZG of adrenal sections stained positive for apoptosis markers. CONCLUSION: LGR5 is the most selectively expressed gene in human ZG and reduces aldosterone production and cell number. Such conditions may favor cells whose somatic mutation reverses aldosterone inhibition and cell loss.This work was supported by MJB is an NIHR Senior Investigator
NF-SI-0512â10 052; LHS holds a British Heart Foundation PhD studentship FS/11/35/28871; JZ holds a Cambridge Overseas Trust Scholarship; AEDT is funded by the Wellcome Trust Translational Medicine and Therapeutics program 085 686/Z/08/A, and by Singapore A* program; EABA was supported by the Austin Doyle Award (Servier Australia); LHS, JZ and EABA were additionally supported by the NIHR Cambridge Biomedical Research Centre; GM are funded by MRC Programme Grants RDAG/287 and SKAG/001 awarded to Ashok Venkitaraman.This is the author accepted manuscript. The final version is available from the Endocrine Society via http://dx.doi.org/10.1210/jc.2015-173
Recommended from our members
Development of a Novel Cell-Permeable Protein-Protein Interaction Inhibitor for the Polo-box Domain of Polo-like Kinase 1.
Polo-like kinase 1 (PLK1) is a key regulator of mitosis and a recognized drug target for cancer therapy. Inhibiting the polo-box domain of PLK1 offers potential advantages of increased selectivity and subsequently reduced toxicity compared with targeting the kinase domain. However, many if not all existing polo-box domain inhibitors have been shown to be unsuitable for further development. In this paper, we describe a novel compound series, which inhibits the protein-protein interactions of PLK1 via the polo-box domain. We combine high throughput screening with molecular modeling and computer-aided design, synthetic chemistry, and cell biology to address some of the common problems with protein-protein interaction inhibitors, such as solubility and potency. We use molecular modeling to improve the solubility of a hit series with initially poor physicochemical properties, enabling biophysical and biochemical characterization. We isolate and characterize enantiomers to improve potency and demonstrate on-target activity in both cell-free and cell-based assays, entirely consistent with the proposed binding model. The resulting compound series represents a promising starting point for further progression along the drug discovery pipeline and a new tool compound to study kinase-independent PLK functions
Interrogation of the protein-protein interactions between human BRCA2 BRC repeats and RAD51 reveals atomistic determinants of affinity.
The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are âŒ35 residue peptide motifs that interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose sequence and spacing are evolutionarily conserved. Despite their sequence conservation, there is evidence that the different human BRC repeats have distinct capacities to bind RAD51. A previously published crystal structure reports the structural basis of the interaction between human BRC4 and the catalytic core domain of RAD51. However, no structural information is available regarding the binding of the remaining seven BRC repeats to RAD51, nor is it known why the BRC repeats show marked variation in binding affinity to RAD51 despite only subtle sequence variation. To address these issues, we have performed fluorescence polarisation assays to indirectly measure relative binding affinity, and applied computational simulations to interrogate the behaviour of the eight human BRC-RAD51 complexes, as well as a suite of BRC cancer-associated mutations. Our computational approaches encompass a range of techniques designed to link sequence variation with binding free energy. They include MM-PBSA and thermodynamic integration, which are based on classical force fields, and a recently developed approach to computing binding free energies from large-scale quantum mechanical first principles calculations with the linear-scaling density functional code onetep. Our findings not only reveal how sequence variation in the BRC repeats directly affects affinity with RAD51 and provide significant new insights into the control of RAD51 by human BRCA2, but also exemplify a palette of computational and experimental tools for the analysis of protein-protein interactions for chemical biology and molecular therapeutics
Recommended from our members
Computationally-guided optimization of small-molecule inhibitors of the Aurora A kinase-TPX2 protein-protein interaction.
Free energy perturbation theory, in combination with enhanced sampling of protein-ligand binding modes, is evaluated in the context of fragment-based drug design, and used to design two new small-molecule inhibitors of the Aurora A kinase-TPX2 protein-protein interaction