4 research outputs found

    A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben - Prydz Bay region, East Antarctica

    Get PDF
    The Cenozoic glacial history of East Antarctica is recorded in part by the stratigraphy of the Prydz Bay - Lambert Graben region. The glacigene strata and associated erosion surfaces record at least 10 intervals of glacial advance (with accompanying erosion and sediment compaction), and more than 17 intervals of glacial retreat (enabling open marine deposition in Prydz Bay and the Lambert Graben). The number of glacial advances and retreats is considerably less than would be expected from Milankovitch frequencies due to the incomplete stratigraphic record. Large advances of the Lambert Glacier caused progradation of the continental shelf edge. At times of extreme glacial retreat, marine conditions reached > 450 km inland from the modern ice shelf edge. This review presents a partial reconstruction of Cenozoic glacial extent within Prydz Bay and the Lambert Graben that can be compared to eustatic sea-level records from the southern Australian continental margin

    Cenozoic glacigene sedimentation and erosion at the Menzies Range, southern Prince Charles Mountains, Antarctica

    No full text
    The Menzies Range in the southern Prince Charles Mountains, Antarctica, records at least four intervals of Cenozoic terrestrial glacigene sedimentation, and two periods of glacial erosion. The oldest Cenozoic strata, here named the Pardoe Formation, are >240 m thick, and consist of variable diamicts with subordinate sandstones and minor laminated lacustrine siltstones. The Pardoe Formation overlies a rugged erosion surface cut into Precambrian basement. Two subsequent Cenozoic sequences are here named informally the Trail diamicts and the younger Amphitheatre diamicts. The latter infilled the lower regions of an extremely rugged erosion surface, many components of which still dominate the present topography. The palaeodrainage of this erosion surface is markedly discordant with that of the older erosion surface underlying the Pardoe Formation. These three depositional events and the two associated erosion surfaces record warmer climates and increased snow accumulation under conditions of temperate wet-based glaciation. During the excavation of the sub-Amphitheatre diamict erosion surface, the East Antarctic ice sheet was either absent, further inland or the height of its surface relative to the Menzies Range was considerably lower than at present. The fourth and youngest depositional episode, recorded by a veneer of boulder gravel distributed along the northern flank of the Menzies Range, is from dry-based glacier ice, and assumed to be 240 m thick, and consist of variable diamicts with subordinate sandstones and minor laminated lacustrine siltstones. The Pardoe Formation overlies a rugged erosion surface cut into Precambrian basement. Two subsequent Cenozoic sequences are here named informally the Trail diamicts and the younger Amphitheatre diamicts. The latter infilled the lower regions of an extremely rugged erosion surface, many components of which still dominate the present topography. The palaeodrainage of this erosion surface is markedly discordant with that of the older erosion surface underlying the Pardoe Formation. These three depositional events and the two associated erosion surfaces record warmer climates and increased snow accumulation under conditions of temperate wet-based glaciation. During the excavation of the sub-Amphitheatre diamict erosion surface, the East Antarctic ice sheet was either absent, further inland or the height of its surface relative to the Menzies Range was considerably lower than at present. The fourth and youngest depositional episode, recorded by a veneer of boulder gravel distributed along the northern flank of the Menzies Range, is from dry-based glacier ice, and assumed to b

    Pleistocene deglaciation chronology of the Amery Oasis and Radok Lake, northern Prince Charles Mountains, Antarctica

    No full text
    The East Antarctic Ice Sheet is the largest ice mass on Earth with a capacity to raise global sea level by up to 65 m. As the Lambert Glacier–Amery Ice Shelf drainage system is the largest to reach the coast of Antarctica, quantifying its evolution over the Quaternary is a vital component in developing an understanding of the Antarctic response to future climate change. Here we present a deglaciation chronology based on 10Be and 26Al in situ cosmogenic exposure ages of the northern Prince Charles Mountains, which flank the Lambert Glacier–Amery system, and that records the progressive emergence of McLeod Massif and Radok Lake basin from beneath the Mac.Robertson Land lobe of the East Antarctic Ice Sheet. The exposure ages monotonically decrease with both decreasing altitude and increasing proximity to the Amery Ice Shelf at the Antarctic coast. Exposure ages from the crests of McLeod Massif near the edge the Amery Ice Shelf and from Fisher Massif, 75 km further inland, each at 1200 m above sea level, are 2.2 ± 0.3 and 1.9 ± 0.2 Ma, respectively, suggesting their continuous exposure above the ice sheet at least since close to the Plio–Pleistocene boundary. An extensive plateau at 800 m altitude on McLeod Massif above Battye Glacier records the massif's increased emergence above the ice sheet surface at about between 880 and 930 ka ago indicating 400 m of ice volume reduction in the mid Pleistocene. Correcting these apparent ages for a reasonable choice in erosion rate would extend this event to 1.15 Ma — a period identified from Prydz Bay ODP core-1167 when sedimentation composition alters and rates decrease 10-fold. Exposure ages from boulder-mantled erosional surfaces above and beyond the northern end of Radok Lake at 220 m, range from 28 to 121 ka. Independent of choice of model interpretation to explain this age spread, the most recent major reoccupation of Radok Lake by Battye Glacier ice occurred during the last glacial cycle. Moraine ridges at the lower altitude of 70–125 m were deposited during the final withdrawal of Battye Glacier ice from the lake basin between 11 and 20 ka ago. This new chronology indicates that the highest Amery Oasis peaks have not been overridden by the Mac.Robertson Land lobe of the East Antarctic Ice Sheet for at least the past 2 Ma. Since this time we document 3 major periods of regional reduction in ice sheet volume at 1.1 Ma, during the last glacial cycle (120 to 30 ka) and through the Last Glacial Maximum (20 to 10 ka) that resulted in an overall 1000 m of ice lowering in the Battye Glacier–Radok Lake region

    Diatom biostratigraphy of the Cenozoic glaciomarine Pagodroma Group, northern Prince Charles Mountains, East Antarctica

    No full text
    In the northern Prince Charles Mountains glaciomarine sediments of the Pagodroma Group outcrop on Fisher Massif (Mt Johnston and Fisher Bench Formations) and at the Amery Oasis (Battye Glacier and Bardin Bluffs Formations), at locations 300 and 250 km south of the Amery Ice Shelf edge, respectively. Most of the Pagodroma Group consists of ice-proximal glaciomarine diamict, and a much subordinate (30.1 Ma), Middle Miocene (14.5-12.5 Ma and 12.1-11.5 Ma), Early Pliocene (4.9-3.6 Ma) and, tentatively, Late Pliocene (3.4-2.6 Ma) strata. These microfossil data further develop the interpretation that the Pagodroma Group formed during episodes of reduced glacial extent when, in the absence of an ice shelf, marine waters penetrated far southwards into the Lambert Graben of East Antarctica
    corecore