534 research outputs found

    Land use/vegetation mapping in reservoir management. Merrimack River basin

    Get PDF
    This report consists of an analysis of: ERTS-1 Multispectral Scanner imagery obtained 10 August 1973; Skylab 3 S190A and S190B photography, track 29, taken 21 September 1973; and RB-57 high-altitude aircraft photography acquired 26 September 1973. These data products were acquired on three cloud-free days within a 47-day period. The objectives of this study were: (1) to make quantitative comparisons between high-altitude aircraft photography and satellite imagery, and (2) to demonstrate the extent to which high resolution (S190A and B) space-acquired data can be used for land use/vegetation mapping and management of drainage basins

    Games in Agriculture, Food, and Natural Resources Education

    Full text link
    Educational games provide learners with team-based, experiential, and problem-centered learning opportunities. Therefore, educational games are recommended to encourage learner success in an increasingly complex and collaborative world. Research exploring interventions to increase teacher affinity toward games is needed to inform expansion of games within classrooms. The current study leveraged the input, environment, and outcomes model to analyze perceptions of games held by school-based agriculture, food, and natural resources (AFNR) educators before and after a professional development experience focused on educational games. Results indicate teachers held a favorable perception of games before engaging in the professional development. Engagement in the professional development was related to only minimal increases in the perceptions held by teachers regarding educational games. Importantly, individual items within the construct illuminate an expanded view of educational games and their utility within AFNR classrooms as a result of the professional development experience. Specifically, respondents saw educational games as being valuable to engage learners in new content, not just as a review tool. Findings suggest a professional development experience related to games may help expand teacher conceptualizations of educational game utility. Specific recommendations are included to expand teacher understanding and use of educational games

    New England reservoir management: Land use/vegetation mapping in reservoir management (Merrimack River Basin)

    Get PDF
    The author has identified the following significant results. It is evident from this comparison that for land use/vegetation mapping the S190B Skylab photography compares favorably with the RB-57 photography and is much superior to the ERTS-1 and Skylab 190A imagery. For most purposes the 12.5 meter resolution of the S190B imagery is sufficient to permit extraction of the information required for rapid land use and vegetation surveys necessary in the management of reservoir or watershed. The ERTS-1 and S190A data products are not considered adequate for this purpose, although they are useful for rapid regional surveys at the level 1 category of the land use/vegetation classification system

    The Drosophila Zinc Finger Protein Trade Embargo Is Required for Double Strand Break Formation in Meiosis

    Get PDF
    Homologous recombination in meiosis is initiated by the programmed induction of double strand breaks (DSBs). Although the Drosophila Spo11 ortholog Mei-W68 is required for the induction of DSBs during meiotic prophase, only one other protein (Mei-P22) has been shown to be required for Mei-W68 to exert this function. We show here that the chromatin-associated protein Trade Embargo (Trem), a C2H2 zinc finger protein, is required to localize Mei-P22 to discrete foci on meiotic chromosomes, and thus to promote the formation of DSBs, making Trem the earliest known function in the process of DSB formation in Drosophila oocytes. We speculate that Trem may act by either directing the binding of Mei-P22 to preferred sites of DSB formation or by altering chromatin structure in a manner that allows Mei-P22 to form foci

    Planning for precarity? Experiencing the carceral continuum of imprisonment and reentry

    Get PDF
    Drawing on qualitative interviews with formerly imprisoned people in Canada, we show that most prisoners experience reentry into communities with little to no pre-release planning, and must rely upon their own resourcefulness to navigate fragmented social services and often informal supports. In this respect, our research findings contrast with U.S. punishment and society scholarship that highlights a complex shadow carceral state that extends the reach of incarceration into communities. Our participants expressed a critical analysis of the failure of the prison to address the needs of prisoners for release planning and supports in the community. Our findings concur with other empirical studies that demonstrate the enduring effects of the continuum of carceral violence witnessed and experienced by prisoners after release. Thus, reentry must be understood in relation to the conditions of confinement and the experience of incarceration itself. We conclude that punishment and society scholarship needs to attend to a nuanced understanding of prisoner reentry and connect reentry studies to a wider critique of the prison industrial complex, offering more empirical evidence of the failure of prisons

    Chromosome Painting Reveals Asynaptic Full Alignment of Homologs and HIM-8–Dependent Remodeling of X Chromosome Territories during Caenorhabditis elegans Meiosis

    Get PDF
    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners

    CRA-1 Uncovers a Double-Strand Break-Dependent Pathway Promoting the Assembly of Central Region Proteins on Chromosome Axes During C. elegans Meiosis

    Get PDF
    The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans

    Repression of Floral Meristem Fate Is Crucial in Shaping Tomato Inflorescence

    Get PDF
    Tomato is an important crop and hence there is a great interest in understanding the genetic basis of its flowering. Several genes have been identified by mutations and we constructed a set of novel double mutants to understand how these genes interact to shape the inflorescence. It was previously suggested that the branching of the tomato inflorescence depends on the gradual transition from inflorescence meristem (IM) to flower meristem (FM): the extension of this time window allows IM to branch, as seen in the compound inflorescence (s) and falsiflora (fa) mutants that are impaired in FM maturation. We report here that JOINTLESS (J), which encodes a MADS-box protein of the same clade than SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) in Arabidopsis, interferes with this timing and delays FM maturation, therefore promoting IM fate. This was inferred from the fact that j mutation suppresses the high branching inflorescence phenotype of s and fa mutants and was further supported by the expression pattern of J, which is expressed more strongly in IM than in FM. Most interestingly, FA - the orthologue of the Arabidopsis LEAFY (LFY) gene - shows the complementary expression pattern and is more active in FM than in IM. Loss of J function causes premature termination of flower formation in the inflorescence and its reversion to a vegetative program. This phenotype is enhanced in the absence of systemic florigenic protein, encoded by the SINGLE FLOWER TRUSS (SFT) gene, the tomato orthologue of FLOWERING LOCUS T (FT). These results suggest that the formation of an inflorescence in tomato requires the interaction of J and a target of SFT in the meristem, for repressing FA activity and FM fate in the IM
    • …
    corecore