23 research outputs found

    Potential immunological consequences of pharmacological suppression of gastric acid production in patients with multiple sclerosis

    Get PDF
    Corticosteroids are standard treatment for patients with multiple sclerosis experiencing acute relapse. Because dyspeptic pain is a common side effect of this intervention, patients can be given a histamine receptor-2 antagonist, proton pump inhibitor or antacid to prevent or ameliorate this disturbance. Additionally, patients with multiple sclerosis may be taking these medications independent of corticosteroid treatment. Interventions for gastric disturbances can influence the activation state of the immune system, a principal mediator of pathology in multiple sclerosis. Although histamine release promotes inflammation, activation of the histamine receptor-2 can suppress a proinflammatory immune response, and blocking histamine receptor-2 with an antagonist could shift the balance more towards immune stimulation. Studies utilizing an animal model of multiple sclerosis indicate that histamine receptor-2 antagonists potentially augment disease activity in patients with multiple sclerosis. In contrast, proton pump inhibitors appear to favor immune suppression, but have not been studied in models of multiple sclerosis. Antacids, histamine receptor-2 antagonists and proton pump inhibitors also could alter the intestinal microflora, which may indirectly lead to immune stimulation. Additionally, elevated gastric pH can promote the vitamin B12 deficiency that patients with multiple sclerosis are at risk of developing. Here, we review possible roles of gastric acid inhibitors on immunopathogenic mechanisms associated with multiple sclerosis

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Inner-Shell Excitation Spectroscopy of \u3ci\u3ecloso\u3c/i\u3e-Carboranes

    Get PDF
    Oscillator strength spectra in the region of B 1s and C 1s excitation of three isomeric carborane cage compounds [closo-1,2-orthocarborane, closo-1,7-metacarborane, closo-1,12-paracarborane (C2B10H12)] have been derived from inner-shell electron energy loss spectra (ISEELS) recorded under electric dipole-scattering conditions. Total ion yield spectra recorded at high resolution with synchrotron radiation are also reported. The spectral features are assigned on the basis of comparisons with spectral predictions derived from the results of ab initio and semiempirical (extended Hückel) molecular orbital calculations. The isomeric and core level variations in the discrete core excitations are related to changes in orbital symmetries as well as variations in electron localization in these isomers. The ionization efficiency in the region of the B 1s and C 1s edges is derived
    corecore