181 research outputs found

    Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin

    Get PDF
    The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and oÂĄshore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic

    Comparison of Carbon Nutrition for Pathogenic and Commensal ,\u3cem\u3eEscherichia coli\u3c/em\u3e Strains in the Mouse Intestine

    Get PDF
    The carbon sources that support the growth of pathogenic Escherichia coli O157:H7 in the mammalian intestine have not previously been investigated. In vivo, the pathogenic E. coli EDL933 grows primarily as single cells dispersed within the mucus layer that overlies the mouse cecal epithelium. We therefore compared the pathogenic strain and the commensal E. coli strain MG1655 modes of metabolism in vitro, using a mixture of the sugars known to be present in cecal mucus, and found that the two strains used the 13 sugars in a similar order and cometabolized as many as 9 sugars at a time. We conducted systematic mutation analyses of E. coli EDL933 and E. coli MG1655 by using lesions in the pathways used for catabolism of 13 mucus-derived sugars and five other compounds for which the corresponding bacterial gene system was induced in the transcriptome of cells grown on cecal mucus. Each of 18 catabolic mutants in both bacterial genetic backgrounds was fed to streptomycin-treated mice, together with the respective wild-type parent strain, and their colonization was monitored by fecal plate counts. None of the mutations corresponding to the five compounds not found in mucosal polysaccharides resulted in colonization defects. Based on the mutations that caused colonization defects, we determined that both E. coli EDL933 and E. coli MG1655 used arabinose, fucose, and N-acetylglucosamine in the intestine. In addition, E. coli EDL933 used galactose, hexuronates, mannose, and ribose, whereas E. coli MG1655 used gluconate and N-acetylneuraminic acid. The colonization defects of six catabolic lesions were found to be additive with E. coli EDL933 but not with E. coli MG1655. The data indicate that pathogenic E. coli EDL933 uses sugars that are not used by commensal E. coli MG1655 to colonize the mouse intestine. The results suggest a strategy whereby invading pathogens gain advantage by simultaneously consuming several sugars that may be available because they are not consumed by the commensal intestinal microbiota

    Microstructure and thermal stability of Fe, Ti and Ag implanted Yttria-stabilized zirconia

    Get PDF
    Yttria-stabilized zirconia (YSZ) was implanted with 15 keV Fe or Ti ions up to a dose of 8×1016 at cm−2. The resulting “dopant” concentrations exceeded the concentrations corresponding to the equilibrium solid solubility of Fe2O3 or TiO2 in YSZ. During oxidation in air at 400° C, the Fe and Ti concentration in the outermost surface layer increased even further until a surface layer was formed of mainly Fe2O3 and TiO2, as shown by XPS and ISS measurements. From the time dependence of the Fe and Ti depth profiles during anneal treatments, diffusion coefficients were calculated. From those values it was estimated that the maximum temperature at which the Fe- and Ti-implanted layers can be operated without changes in the dopant concentration profiles was 700 and 800° C, respectively. The high-dose implanted layer was completely amorphous even after annealing up to 1100° C, as shown by scanning transmission electron microscopy. Preliminary measurements on 50 keV Ag implanted YSZ indicate that in this case the amorphous layer recrystallizes into fine grained cubic YSZ at a temperature of about 1000° C. The average grain diameter was estimated at 20 nm, whereas the original grain size of YSZ before implantation was 400 nm. This result implies that the grain size in the surface of a ceramic material can be decreased by ion beam amorphisation and subsequent recrystallisation at elevated temperatures

    Mineral Constituents of the Cotton Plant 1

    No full text

    An Improved Form of a Fumeles Digestion Apparatus

    No full text

    The Cause of Deterioration and Spoiling of Corn and Corn Meal.

    No full text
    • 

    corecore