46 research outputs found

    Collective Field Description of Matrix Cosmologies

    Full text link
    We study the Das-Jevicki collective field description of arbitrary classical solutions in the c=1 matrix model, which are believed to describe nontrivial spacetime backgrounds in 2d string theory. Our analysis naturally includes the case of a Fermi droplet cosmology: a finite size droplet of Fermi fluid, made up of a finite number of eigenvalues. We analyze properties of the coordinates in which the metric in the collective field theory is trivial, and comment on the form of the interaction terms in these coordinates.Comment: 16 pages, 1 figure. v2: Typos corrected, JHEP styl

    Rolling Tachyon Boundary State, Conserved Charges and Two Dimensional String Theory

    Get PDF
    The boundary state associated with the rolling tachyon solution on an unstable D-brane contains a part that decays exponentially in the asymptotic past and the asymptotic future, but it also contains other parts which either remain constant or grow exponentially in the past or future. We argue that the time dependence of the latter parts is completely determined by the requirement of BRST invariance of the boundary state, and hence they contain information about certain conserved charges in the system. We also examine this in the context of the unstable D0-brane in two dimensional string theory where these conserved charges produce closed string background associated with the discrete states, and show that these charges are in one to one correspondence with the symmetry generators in the matrix model description of this theory.Comment: LaTeX file, 37 pages; v3: references added; v4: minor change

    On the S-matrix of Type 0 String Theory

    Full text link
    The recent discovery of non-perturbatively stable two-dimensional string backgrounds and their dual matrix models allows the study of complete scattering matrices in string theory. In this note we adapt work of Moore, Plesser, and Ramgoolam on the bosonic string to compute the exact S-matrices of 0A and 0B string theory in two dimensions. Unitarity of the 0B theory requires the inclusion of massless soliton sectors carrying RR scalar charge as asymptotic states. We propose a regularization of IR divergences and find transition probabilities that distinguish the otherwise energetically degenerate soliton sectors. Unstable D-branes can decay into distinct soliton sectors.Comment: 30 pages, 6 figures, harvma

    Tachyon Backgrounds in 2D String Theory

    Full text link
    We consider the construction of tachyonic backgrounds in two-dimensional string theory, focusing on the Sine-Liouville background. This can be studied in two different ways, one within the context of collective field theory and the other via the formalism of Toda integrable systems. The two approaches are seemingly different. The latter involves a deformation of the original inverted oscillator potential while the former does not. We perform a comparison by explicitly constructing the Fermi surface in each case, and demonstrate that the two apparently different approaches are in fact equivalent.Comment: 25 pages, no figure

    Branes wrapping black holes as a purely gravitational dielectric effect

    Full text link
    In this paper we give a microscopical description of certain configurations of branes wrapping black hole horizons in terms of dielectric gravitational waves. Interestingly, the configurations are stable only due to the gravitational background. Therefore, this constitutes a nice example of purely gravitational dielectric effect.Comment: 17 pages, no figures. JHEP published versio

    Notes on D-branes in 2D Type 0 String Theory

    Full text link
    In this paper we construct complete macroscopic operators in two dimensional type 0 string theory. They represent D-branes localized in the time direction. We give another equivalent description of them as deformed Fermi surfaces. We also discuss a continuous array of such D-branes and show that it can be described by a matrix model with a deformed potential. For appropriate values of parameters, we find that it has an additional new sector hidden inside its strongly coupled region.Comment: harvmac, 18 pages, 2 figures, references adde

    Particle Production in Matrix Cosmology

    Get PDF
    We consider cosmological particle production in 1+1 dimensional string theory. The process is described most efficiently in terms of anomalies, but we also discuss the explicit mode expansions. In matrix cosmology the usual vacuum ambiguity of quantum fields in time-dependent backgrounds is resolved by the underlying matrix model. This leads to a finite energy density for the "in" state which cancels the effect of anomalous particle production.Comment: 24 pages, 1 figure; v2: references added, minor change

    The Cap in the Hat: Unoriented 2D Strings and Matrix(-Vector) Models

    Full text link
    We classify the possible bosonic and Type 0 unoriented string theories in two dimensions, and find their dual matrix(-vector) models. There are no RP^2 R-R tadpoles in any of the models, but many of them possess a massless tachyon tadpole. Thus all the models we find are consistent two-dimensional string vacua, but some get quantum corrections to their classical tachyon background. Where possible, we solve the tadpole cancellation condition, and find all the tachyon tadpole-free theories.Comment: 34 pages, LaTeX; Errors corrected in some of the open string representations in tables 1, 2 and 3. References and acknowledgments adde

    Two-Dimensional Unoriented Strings And Matrix Models

    Get PDF
    We investigate unoriented strings and superstrings in two dimensions and their dual matrix quantum mechanics. Most of the models we study have a tachyon tadpole coming from the RP^2 worldsheet which needs to be cancelled by a renormalization of the worldsheet theory. We find evidence that the dual matrix models describe the renormalized theory. The singlet sector of the matrix models is integrable and can be formulated in terms of fermions moving in an external potential and interacting via the Calogero-Moser potential. We show that in the double-scaling limit the latter system exhibits particle-hole duality and interpret it in terms of the dual string theory. We also show that oriented string theories in two dimensions can be continuously deformed into unoriented ones by turning on non-local interactions on the worldsheet. We find two unoriented superstring models for which only oriented worldsheets contribute to the S-matrix. A simple explanation for this is found in the dual matrix model.Comment: 36 pages, harvmac, 2 eps figure

    Rolling tachyon solution of two-dimensional string theory

    Full text link
    We consider a classical (string) field theory of c=1c=1 matrix model which was developed earlier in hep-th/9207011 and subsequent papers. This is a noncommutative field theory where the noncommutativity parameter is the string coupling gsg_s. We construct a classical solution of this field theory and show that it describes the complete time history of the recently found rolling tachyon on an unstable D0 brane.Comment: 19 pages, 2 figures, minor changes in text and additional references, correction of decay time (version to appear in JHEP.
    corecore