383 research outputs found

    Determining the fate of selenium in wheat biofortification: an isotopically labelled field trial study

    Get PDF
    Aims The principal aim of this research was to quantify retention of a single, realistic Se biofortification application (10 g ha-1) in contrasting soils over two growing seasons utilizing an enriched stable Se isotope (77Se) to discriminate between applied Se and native soil Se. Methods Isotopically enriched 77Se (Na2SeO4) was applied (10 g ha-1) to four replicate plots (2 m x 2 m) of winter wheat, on three contrasting soils on the University of Nottingham farm (UK), at early stem extension in May 2012. Labelled 77Se was assayed in soil and crop fractions by ICP-MS. Results Topsoil retained a proportion of applied Se at harvest (c. 15 – 31 %) with only minor retention in subsoil (2-4 %), although losses were 37 – 43 %. Further analysis of topsoil 77Se, the following spring, and at second harvest, suggested that labelled Se retained in soil was25 fixed and uptake by a following crop was negligible. Conclusions Prolonged biofortification leads to accumulation of Se in soil but the retained Se has very low bioavailability and mobility. The time required to double the soil Se content would be about 500 years. However, reincorporation of cereal straw could provide a residual source of Se for a following crop, depending on timing and management

    Comparative Effectiveness of High-Dose Versus Standard-Dose Influenza Vaccine Among Patients Receiving Maintenance Hemodialysis

    Get PDF
    Rationale & Objective: Studies of patients on maintenance dialysis therapy suggest that standard-dose influenza vaccine (SDV) may not prevent influenza-related outcomes. Little is known about the comparative effectiveness of SDV versus high-dose influenza vaccine (HDV) in this population. Study Design: Cohort study using data from the US Renal Data System. Setting & Participants: 507,552 adults undergoing in-center maintenance hemodialysis between the 2010 to 2011 and 2014 to 2015 influenza seasons. Exposures: SDV and HDV. Outcomes: All-cause mortality, hospitalization due to influenza or pneumonia, and influenza-like illness during the influenza season. Analytic Approach: Patients were eligible for inclusion in multiple yearly cohorts; thus, our unit of analysis was the influenza patient-season. To examine the relationship between vaccine dose and effectiveness outcomes, we estimated risk differences and risk ratios using propensity score weighting of Kaplan-Meier functions, accounting for a wide range of patient- and facility-level characteristics. For nonmortality outcomes, we used competing-risk methods to account for the high mortality rate in the dialysis population. Results: Within 225,215 influenza patient-seasons among adults 65 years and older, 97.4% received SDV and 2.6% received HDV. We observed similar risk estimates for HDV and SDV recipients for mortality (risk difference, −0.08%; 95% CI, −0.85% to 0.80%), hospitalization due to influenza or pneumonia (risk difference, 0.15%; 95% CI, −0.69% to 0.93%), and influenza-like illness (risk difference, 0.00%; 95% CI, −1.50% to 1.08%). Our findings were similar among adults younger than 65 years, as well as within other subgroups defined by influenza season, age group, dialysis vintage, month of influenza vaccination, and vaccine valence. Limitations: Residual confounding and outcome misclassification. Conclusions: The HDV does not appear to provide additional protection beyond the SDV against all-cause mortality or influenza-related outcomes for adults undergoing hemodialysis. The additional cost and side effects associated with HDV should be considered when offering this vaccine. Future studies of HDV and other influenza vaccine strategies are warranted

    Discrete cilia modelling with singularity distributions

    Get PDF
    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous ‘singularity models’ is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a ‘posterior tilt,’ and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 μm/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this technique to various other biological problems, particularly in the reproductive system

    Should science educators deal with the science/religion issue?

    Get PDF
    I begin by examining the natures of science and religion before looking at the ways in which they relate to one another. I then look at a number of case studies that centre on the relationships between science and religion, including attempts to find mechanisms for divine action in quantum theory and chaos theory, creationism, genetic engineering and the writings of Richard Dawkins. Finally, I consider some of the pedagogical issues that would need to be considered if the science/religion issue is to be addressed in the classroom. I conclude that there are increasing arguments in favour of science educators teaching about the science/religion issue. The principal reason for this is to help students better to learn science. However, such teaching makes greater demands on science educators than has generally been the case. Certain of these demands are identified and some specific suggestions are made as to how a science educator might deal with the science/religion issue. © 2008 Taylor & Francis

    An Emerging Natural History in the Development, Mechanisms and Worldwide Prevalence of Major Mental Disorders

    Get PDF
    Conciliating recent findings from molecular genetics, evolutionary biology, and clinical observations together point to new understandings regarding the mechanism, development and the persistent worldwide prevalence of major mental disorders (MMDs), which should be considered the result of an evolutionary downside trade off. Temperamental/trait variability, by facilitating choices for individual and group responses, confers robustness flexibility and resilience crucial to success of our species. Extreme temperamental variants, originating evolutionarily from the asocial aspect of human nature, also constitute the premorbid personality of the disorders. The latter create vulnerable individuals out of whom some will develop MMDs but at much higher rate to that of the general population. Significantly, similar temperamental “lopsidedness� enables many of these vulnerable individuals, if intelligent, tenacious, and curious, to be creative and contribute to our survival while some may also develop MMDs. All have a common neural-developmental origin and share characteristics in their clinical expression and pharmacological responses also expressed as mixed syndromes or alternating ones over time. Over-pruning of synaptic neurons may be considered the trigger of such occurrences or conversely, the failure to prevent them in spite of it. The symptoms of the major mental disorders are made up of antithetical substitutes as an expression of a disturbed over-all synchronizing property of brain function for all higher faculties previously unconsidered in their modeling. The concomitant presence of psychosis is a generic common occurrence

    What's the catch? Archaeological application of rapid collagen-based species identification for Pacific Salmon

    Get PDF
    YesPacific salmon (Oncorhynchus spp.) are ecological and cultural keystone species along the Northwest Coast of North America and are ubiquitous in archaeological sites of the region. The inability to morphologically identify salmonid post-cranial remains to species, however, can limit our understanding of the ecological and cultural role different taxa played in the seasonal subsistence practices of Indigenous groups in the past. Here, we present a rapid, cost-effective ZooMS method to distinguish salmonid species based on collagen peptide mass-fingerprinting. Using modern reference material and an assemblage of 28 DNA-identified salmonid bones from the pre-contact Yup'ik site of Nunalleq, Western Alaska, we apply high-resolution mass spectrometry (LC-MS/MS) to identify a series of potential collagen peptide markers to distinguish Pacific salmon. We then confirm these peptide markers with a blind ZooMS analysis (MALDI-TOF-MS) of the archaeological remains. We successfully distinguish five species of anadromous salmon with this ZooMS approach, including one specimen that could not be identified through ancient DNA analysis. Our biomolecular identification of chum (43%), sockeye (21%), chinook (18%), coho (11%) and pink (7%), confirm the exploitation of all five available species of salmonid at Nunalleq

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    The structural basis of bacterial manganese import

    Get PDF
    Metal ions are essential for all forms of life. In prokaryotes, ATP-binding cassette (ABC) permeases serve as the primary import pathway for many micronutrients including the first-row transition metal manganese. However, the structural features of ionic metal transporting ABC permeases have remained undefined. Here, we present the crystal structure of the manganese transporter PsaBC from Streptococcus pneumoniae in an open-inward conformation. The type II transporter has a tightly closed transmembrane channel due to "extracellular gating" residues that prevent water permeation or ion reflux. Below these residues, the channel contains a hitherto unreported metal coordination site, which is essential for manganese translocation. Mutagenesis of the extracellular gate perturbs manganese uptake, while coordination site mutagenesis abolishes import. These structural features are highly conserved in metal-specific ABC transporters and are represented throughout the kingdoms of life. Collectively, our results define the structure of PsaBC and reveal the features required for divalent cation transport.Stephanie L. Neville, Jennie Sjöhamn, Jacinta A. Watts, Hugo MacDermott-Opeskin, Stephen J. Fairweather, Katherine Ganio, Alex Carey Hulyer, Aaron P. McGrath, Andrew J. Hayes, Tess R. Malcolm, Mark R. Davies, Norimichi Nomura, So Iwata, Megan L. O’Mara, Megan J. Maher, Christopher A. McDevit
    corecore