23 research outputs found

    Autocrine Production of IGF‐I Increases Stem Cell‐Mediated Neuroprotection

    Full text link
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder resulting in motor neuron (MN) loss. There are currently no effective therapies; however, cellular therapies using neural progenitor cells protect MNs and attenuate disease progression in G93A‐SOD1 ALS rats. Recently, we completed a phase I clinical trial examining intraspinal human spinal stem cell (HSSC) transplantation in ALS patients which demonstrated our approach was safe and feasible, supporting the phase II trial currently in progress. In parallel, efforts focused on understanding the mechanisms underlying the preclinical benefit of HSSCs in vitro and in animal models of ALS led us to investigate how insulin‐like growth factor‐I (IGF‐I) production contributes to cellular therapy neuroprotection. IGF‐I is a potent growth factor with proven efficacy in preclinical ALS studies, and we contend that autocrine IGF‐I production may enhance the salutary effects of HSSCs. By comparing the biological properties of HSSCs to HSSCs expressing sixfold higher levels of IGF‐I, we demonstrate that IGF‐I production augments the production of glial‐derived neurotrophic factor and accelerates neurite outgrowth without adversely affecting HSSC proliferation or terminal differentiation. Furthermore, we demonstrate that increased IGF‐I induces more potent MN protection from excitotoxicity via both indirect and direct mechanisms, as demonstrated using hanging inserts with primary MNs or by culturing with organotypic spinal cord slices, respectively. These findings support our theory that combining autocrine growth factor production with HSSC transplantation may offer a novel means to achieve additive neuroprotection in ALS. Stem Cells 2015;33:1480–1489Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111155/1/stem1933.pd

    Human neural stem cell transplantation into the corpus callosum of Alzheimer’s mice

    Full text link
    The hippocampus has been the target of stem cell transplantations in preclinical studies focused on Alzheimer’s disease, with results showing improvements in histological and behavioral outcomes. The corpus callosum is another structure that is affected early in Alzheimer’s disease. Therefore, we hypothesize that this structure is a novel target for human neural stem cell transplantation in transgenic Alzheimer’s disease mouse models. This study demonstrates the feasibility of targeting the corpus callosum and identifies an effective immunosuppression regimen for transplanted neural stem cell survival. These results support further preclinical development of the corpus callosum as a therapeutic target in Alzheimer’s disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138852/1/acn3443_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138852/2/acn3443.pd

    Irish cardiac society - Proceedings of annual general meeting held 20th & 21st November 1992 in Dublin Castle

    Get PDF

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society

    Lentiviral vector‐mediated knockdown of the neuroglycan 2 proteoglycan or expression of neurotrophin‐3 promotes neurite outgrowth in a cell culture model of the glial scar

    Get PDF
    Background Following spinal cord injury, a highly inhibitory environment for axonal regeneration develops. One of the main sources of this inhibition is the glial scar that is formed after injury by reactive astrocytes. The inhibitory environment is mainly a result of chondroitin sulphate proteoglycans (CSPGs). Neuroglycan 2 (NG2), one of the main inhibitory CSPGs, is up-regulated following spinal cord injury.Methods Small interfering RNA (siRNA) was designed to target NG2 and this short hairpin RNA (shRNA) was cloned into a lentiviral vector (LV). The neurotrophic factor neurotrophin-3 (NT-3) promotes the growth and survival of developing neurites and has also been shown to aid regeneration. NT-3 was also cloned into a LV. In vitro assessment of these vectors using a coculture system of dorsal root ganglia (DRG) neurones and Neu7 astrocytes was carried out. The Neu7 cell line is a rat astrocyte cell line that overexpresses NG2, thereby mimicking the inhibitory environment following spinal cord injury.Results and Discussion These experiments show that both the knockdown of NG2 via shRNA and over-expression of NT-3 can significantly increase neurite growth, although a combination of both vectors did not confer any additional benefit over the vectors used individually. These LVs show promising potential for growth and survival of neurites in injured central nervous system tissue (CNS). Copyright (C) 2010 John Wiley & Sons, Ltd.We wish to thank Professor Dider Trono (EFPL, Switzerland) for the kind gift of the lentiviral vector gene transfer and packaging plasmids and Dr John Rogers and Professor James Fawcett (University of Cambridge) for their kind gift of the Neu7 astrocyte cell line. This work was supported by funding from the Health Research Board of Ireland and Science Foundation Ireland.peer-reviewe

    Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression

    No full text
    Mesenchymal stem cell (MSC) therapy offers the potential to promote recovery after myocardial infarction (MI). However, therapeutic efficacy may be limited by poor survival and retention of transplanted cells. A combination of gene and cell therapy has the capacity to prevent donor cell death and augment the reparative and regenerative effects of cell transfer. The present study investigates the effect of exogenous heat shock protein 27 (Hsp27) expression in MSCs in an in vitro model of ischemia and in an in vivo rat MI model and aims to determine if this could enhance the therapeutic benefit associated with cell delivery. Hsp27 overexpression by lentivirus vector modification resulted in increased MSC survival in vitro and in vivo. Furthermore, decreased apoptosis in the infarcted tissue and improved cardiac function was observed in the Hsp27 group, enhancing the therapeutic effect of MSCs. Together, these data demonstrate that ex vivo genetic modificationspecifically Hsp27 overexpressionoffers the possibility of enhancing the efficacy of MSC therapy in MI
    corecore