3,841 research outputs found
Transition-metal silicides lattice-matched to silicon
We have used a systematic search to determine all the possible transition-metal silicides that are geometrically lattice-matched to either the (100), (110), or the (111) face of silicon. A short table with the best possible matches is presented here, and a more comprehensive table including slightly worse matches is deposited with the editor
Push clocks: a new approach to charge-coupled devices clocking
A new approach to charge-coupled device clocking has been developedâdynamic push clocks. With dynamic push clocks, the charge is transferred by pushing it from one storage site to another. The push clock approach results in a larger signal dynamic range, larger signal-to-noise ratio, and better performance at both high and low frequencies
Effect of Buffer Layer and III/V Ratio on the Surface Morphology of GaN Grown by MBE
The surface morphology of GaN is observed by atomic force microscopy for growth on GaN and AlN buffer layers and as a function of III/V flux ratio. Films are grown on sapphire substrates by molecular beam epitaxy using a radio frequency nitrogen plasma source. Growth using GaN buffer layers leads to N-polar films, with surfaces strongly dependent on the flux conditions used. Flat surfaces can be obtained by growing as Ga-rich as possible, although Ga droplets tend to form. Ga-polar films can be grown on AlN buffer layers, with the surface morphology determined by the conditions of buffer layer deposition as well as the III/V ratio for growth of the GaN layer. Near-stoichiometric buffer layer growth conditions appear to support the flattest surfaces in this case. Three defect types are typically observed in GaN films on AlN buffers, including large and small pits and "loop" defects. It is possible to produce surfaces free from large pit defects by growing thicker films under more Ga-rich conditions. In such cases the surface roughness can be reduced to less than 1 nm RMS
X-ray photoelectron spectroscopy investigation of the mixed anion GaSb/InAs heterointerface
X-ray photoelectron spectroscopy has been used to measure levels of anion cross-incorporation and to study interface formation for the mixed anion GaSb/lnAs heterojunction. Anion
cross-incorporation was measured in 20 Ă
thick GaSb layers grown on lnAs, and 20 Ă
thick InAs layers grown on GaSb for cracked and uncracked sources. It was found that significantly
less anion cross-incorporation occurs in structures grown with cracked sources. Interface formation was investigated by studying Sb soaks of InAs surfaces and As soaks of GaSb surfaces
as a function of cracker power and soak time. Exchange of the group V surface atoms was found to be an increasing function of both cracker power and soak time. We find that further
optimization of current growth parameters may be possible by modifying the soak time used at interfaces
Study of interface asymmetry in InAsâGaSb heterojunctions
We present reflection high energy electron diffraction, secondary ion mass spectroscopy, scanning tunneling microscopy and xâray photoelectron spectroscopy studies of the abruptness of InAsâGaSb interfaces. We find that the interface abruptness depends on growth order: InAs grown on GaSb is extended, while GaSb grown on InAs is more abrupt. We first present observations of the interfacial asymmetry, including measurements of band alignments as a function of growth order. We then examine more detailed studies of the InAsâGaSb interface to determine the mechanisms causing the extended interface. Our results show that Sb incorporation into the InAs overlayer and As exchange for Sb in the GaSb underlayer are the most likely causes of the interfacial asymmetry
Scanning tunneling microscopy of lnAs/GaSb superlattices: Subbands, interface roughness, and interface asymmetry
Scanning tunneling microscopy and spectroscopy is used to characterize InAs/GaSb superlattices, grown by molecular-beam epitaxy. Roughness at the interfaces between InAs and GaSb layers is directly observed in the images, and a quantitative spectrum of this roughness is obtained. Electron subbands in the InAs layers are resolved in spectroscopy. Asymmetry between the interfaces of InAs grown on GaSb compared with GaSb grown on In As is seen in voltage-dependent imaging. Detailed
spectroscopic study of the interfaces reveals some subtle differences between the two in terms of their valence-band onsets and conduction-band state density. These differences are interpreted in a model in which the GaSb on InAs interface has an abrupt InSb-like structure, but at the InAs on GaSb interface some Sb grading occurs into the InAs overlayer
Tunnel switch diode based on AlSb/GaSb heterojunctions
We report on tunnel switch diodes based on AlSb barriers and GaSb pân junctions grown by molecular beam epitaxy. These were the devices with thyristor like switching in the GaSb/AlSb system. The characteristic "S" shaped currentâvoltage curve was found to occur for structures with AlSb barriers less than 300 Ă
thick. The switching voltage and current density exhibited less sensitivity to barrier and epilayer thickness than was predicted by the punch-through model. The results were correlated with drift diffusion simulations which have been modified to account for the presence of a tunneling contact
Investigation of PolymerâPlasticizer Blends as SH-SAW Sensor Coatings for Detection of Benzene in Water with High Sensitivity and Long-Term Stability
We report the first-ever direct detection of benzene in water at concentrations below 100 ppb (parts per billion) using acoustic wave (specifically, shear-horizontal surface acoustic wave, SH-SAW) sensors with plasticized polymer coatings. Two polymers and two plasticizers were studied as materials for sensor coatings. For each polymerâplasticizer combination, the influence of the mixing ratio of the blend on the sensitivity to benzene was measured and compared to commercially available polymers that were used for BTEX (benzene, toluene, ethylbenzene, and xylene) detection in previous work. After optimizing the coating parameters, the highest sensitivity and lowest detection limit for benzene were found for a 1.25 ÎŒm thick sensor coating of 17.5%-by-weight diisooctyl azelate-polystyrene on the tested acoustic wave device. The calculated detection limit was 45 ppb, with actual sensor responses to concentrations down to 65 ppb measured directly. Among the sensor coatings that showed good sensitivity to benzene, the best long-term stability was found for a 1.0 ÎŒm thick coating of 23% diisononyl cyclohexane-1,2-dicarboxylate-polystyrene, which was studied here because it is known to show no detectable leaching in water. The present work demonstrates that, by varying type of plasticizer, mixing ratio, and coating thickness, the mechanical and chemical properties of the coatings can be conveniently tailored to maximize analyte sorption and partial chemical selectivity for a given class of analytes as well as to minimize acoustic-wave attenuation in contact with an aqueous phase at the operating frequency of the sensor device
- âŠ