4,075 research outputs found

    Community Foundations Take the Lead: Promising Approaches to Building Inclusive and Equitable Communities

    Get PDF
    Features the work of several community foundations that have promoted racial equity, highlighting their successes and challenges

    Prospects for the future of narrow bandgap materials

    Get PDF
    Recently there has been greatly expended interest in narrow bandgap materials. Modern epitaxial techniques and the growing interest in nanostructures have provided areas of application for some of the unique properties of the narrow bandgap material. As always, one of the primary sources of interest is the small bandgap which makes them the material of choice for many applications in the infrared. However, in recent years their other unique properties have been the basis for a broader set of interests in narrow bandgap semiconductors. The type II band offsets (InAs/GaSb) have been the basis for novel tunnel devices and infrared superlattices. The very small effective masses inherent in small bandgap materials make them the obvious candidates in which to observe quantum confinement effects at larger dimensions than in materials of larger effective mass and wider gap. The ease of making electrical contact to some of the materials (ohmic contact to n-InAs) has made them the material of choice for electrical nanostructures. The ability to put in large amounts of magnetic ions to make magnetic semiconductors has led to a number of novel properties. The technical importance of a narrow bandgap and the unique applications promised by some of the other properties of these materials bode well for substantial research in narrow bandgap semiconductors well into the next decade

    Interface roughness effects on transport in tunnel structures

    Get PDF
    Direct simulations of interface roughness effects on transport properties of tunnel structures are performed using the planar supercell stack method. The method allows for the inclusion of realistic three-dimensional rough interfacial geometries in transport calculations. For double barrier resonant tunneling structures, we used our method to analyze the effect of roughness at each of the four interfaces, and to test for sensitivity of transport properties to island size and height. Our simulations yields the following conclusions: (1) We find that scattering of off-resonance states into on-resonance states provides the dominant contribution to interface roughness assisted tunneling. Analyses of scattering strength sensitivity to interface layer configurations reveals preferential scattering into Delta k parallel to approximate to 2 pi/lambda states, where lambda is the island size. (2) We find that roughness at interfaces adjacent to the quantum well can cause lateral localization of wave functions, which increases with island size and depth. Lateral localization can result in the broadening and shifting of transmission resonances, and the introduction of preferential transmission paths. In structures with wide and tall islands, it is possible to find localization over "islands" as well as localization over "oceans." (3) The leading rough interface is the strongest off-resonance scatterer, while rough interfaces adjacent to quantum well are the strongest on-resonance scatterers. The trailing interface is the weakest scatterer

    Modeling Light-Extraction Characteristics of Packaged Light-Emitting Diodes

    Get PDF
    We employ a Monte Carlo ray-tracing technique to model light-extraction characteristics of light-emitting diodes. By relaxing restrictive assumptions on photon traversal history, our method improves upon available analytical models for estimating light-extraction efficiencies from bare LED chips, and enhances modeling capabilities by realistically treating the various processes which photons can encounter in a packaged LED. Our method is not only capable of calculating extraction efficiencies, but can also provide extensive statistical information on photon extraction processes, and predict LED spatial emission characteristics

    Benchmarking Diversity: A First Look at New York City Foundations and Nonprofits

    Get PDF
    New York City foundations and nonprofit organizations have racially diverse staffs, according to a new report by Philanthropy New York and the Foundation Center, but this diversity decreases at higher levels of seniority. A substantial number of foundations and nonprofits are tracking information about the racial and ethnic makeup of the grantees and populations that they respectively serve. The study is the first of its kind in New York City and the nation to examine "both sides" of the equation -- with survey data from 95 grantmaking foundations and 540 nonprofit organizations in the five boroughs

    Transport characteristics of L-point and Г-point electrons through GaAs-Ga_(1-x)Ai_xAs-GaAs(111} double heterojunctions

    Get PDF
    We present here a study on the transport characteristics of L‐point and Γ‐point derived electrons through abrupt GaAs–Ga_(1−x)Al_xAs–GaAs(111) double heterojunctions. The use of complex‐k band structures in the tight‐binding approximation and transfer matrices provide a reasonably accurate description of the wave function at the GaAs–Ga_(1−x)Al_xAs interface. A representation of the wave function in terms of bulk complex‐k Bloch states is used in the GaAs regions where the potential is bulklike. A representation of the wave function in terms of planar orbitals is used in the central Ga_(1−x)Al_xAs region where the potential deviates from its bulk value (i.e., interfacial region). Within this theoretical framework, realistic band structure effects are taken into account and no artificial rules regarding the connection of the wave function across the interface are introduced. The ten‐band tight‐binding model includes admixture in the total wave function of states derived from different extrema of the GaAs conduction band. States derived from the same extremum of the conduction band appear to couple strongly to each other, whereas states derived from different extrema are found to couple weakly. Transport characteristics of incoming L‐point and Γ‐point Bloch states are examined as a function of the energy of the incoming state, thickness of the Ga_(1−x)Al_xAs barrier, and alloy composition x. Transmission through the Ga_(1−x)Al_xAs barrier is either tunneling or propagating depending on the nature of the Bloch states available for strong coupling in the alloy. Since Bloch states derived from different extrema of the conduction band appear to couple weakly to each other, it seems possible to reflect the low velocity L‐point component of the current while transmitting the high velocity Γ‐point component

    Description of bulk inversion asymmetry in the effective-bond-orbital model

    Get PDF
    We have extended the effective-bond-orbital model (EBOM) method [Y. C. Chang, Phys. Rev. B 37, 8215 (1988)] to include the effects of the bulk inversion asymmetry (BIA) present in zinc blendes. This is accomplished without adding to the number of basis states or extending the range of interaction. We have also investigated a variant form of the EBOM proposed in the original formulation that offers improved zone-center behavior, but may also generate spurious solutions in heterostructure calculations due to poor description of bulk zone-boundary band structure. We offer suggestions for avoiding this problem so that this variant form of EBOM may be used safely. In general, we find that the addition of BIA effects in EBOM results in improved descriptions of zone-center band structure, but also in a loss of accuracy far from the Brillouin-zone center. We illustrate the use of the BIA extension with band-structure calculations for bulk GaSb. We show that the spin splitting predicted by the extended EBOM method for an AlSb/GaSb superlattice is in good agreement with k·p calculations that include BIA effects

    Numerical spurious solutions in the effective mass approximation

    Get PDF
    We have characterized a class of spurious solutions that appears when using the finite difference method to solve the effective mass approximation equations. We find that the behavior of these solutions as predicted by our model shows excellent agreement with numerical results. Using this interpretation we find a set of analytical expressions for conditions that the Luttinger parameters must satisfy to avoid spurious solutions. Finally, we use these conditions to check commonly used sets of parameters for their potential for generating this class of spurious solutions

    Mapping of AlxGa1–xAs band edges by ballistic electron emission spectroscopy

    Get PDF
    We have employed ballistic electron emission microscopy (BEEM) to study the energy positions in the conduction band of AlxGa1 – xAs. Epilayers of undoped AlxGa1 – xAs were grown by molecular beam epitaxy on conductive GaAs substrates. The Al composition x took on values of 0, 0.11, 0.19, 0.25, 0.50, 0.80 and 1 so that the material was examined in both the direct and indirect band gap regime. The AlxGa1 – xAs layer thickness was varied from 100 to 500 Å to ensure probing of bulk energy levels. Different capping layers and surface treatments were explored to prevent surface oxidation and examine Fermi level pinning at the cap layer/AlxGa1 – xAs interface. All samples were metallized ex situ with a 100 Å Au layer so that the final BEEM structure is of the form Au/capping layer/AlxGa1 – xAs/bulk GaAs. Notably we have measured the Schottky barrier height for Au on AlxGa1 – xAs. We have also probed the higher lying band edges such as the X point at low Al concentrations and the L point at high Al concentrations. Variations of these critical energy positions with Al composition x were mapped out in detail and compared with findings from other studies. Local variations of these energy positions were also examined and found to be on the order of 30–50 meV. The results of this study suggest that BEEM can provide accurate positions for multiple energy levels in a single semiconductor structure

    Surface core excitons in III-V semiconductors

    Get PDF
    Recent experiments have shown that the cation core excitons on the (110) surface of many III-V semiconductors have very large binding energies.(^1) They are sometimes reported to be bound by as much as ≳0.8 eV, tightly bound compared to bulk binding energies of ≟0.1 eV. To explore this phenomenon, we have calculated the binding energies and oscillator strengths of core excitons on the (110) surface of GaAs, GaSb, GaP, and InP
    • 

    corecore