27 research outputs found

    Turtle Carapace Anomalies: The Roles of Genetic Diversity and Environment

    Get PDF
    Background: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. Methodology/Principal Findings: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3 % to 69 % in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. Conclusions/Significance: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants an

    Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer

    No full text
    Plasmonics-the study of the interaction between electromagnetic waves and electron plasmas on metal surfaces and in metallic nanostructures-has received much attention in recent years, with potential new applications ranging from subwave-length photonic circuits to photothermal cancer therapy(1-5). In many cases, however, the substantial attenuation of the electromagnetic wave due to absorption (ohmic loss) in the metal is of serious concern. Introduction of optical gain into the dielectric material adjacent to the metal surface has been identified as a means of compensating for the absorption loss(6), but the experimental realization of lossless propagation or optical gain in plasmonic waveguides has proven elusive. Here, we demonstrate direct proof of plasmonic propagation with net positive gain over macroscopic distances. The gain is provided by an optically pumped layer of fluorescent conjugated polymer adjacent to the metal surface in a dielectric-metal-dielectric plasmonic waveguide.</p
    corecore