22 research outputs found

    Diethylcarbamazine activity against Brugia malayi microfilariae is dependent on inducible nitric-oxide synthase and the cyclooxygenase pathway

    Get PDF
    BACKGROUND: Diethylcarbamazine (DEC) has been used for many years in the treatment of human lymphatic filariasis. Its mode of action is not well understood, but it is known to interact with the arachidonic acid pathway. Here we have investigated the contribution of the nitric oxide and cyclooxygenase (COX) pathways to the activity of DEC against B. malayi microfilariae in mice. METHODS: B. malayi microfilariae were injected intravenously into mice and parasitaemia was measured 24 hours later. DEC was then administered to BALB/c mice with and without pre-treatment with indomethacin or dexamethasone and the parasitaemia monitored. To investigate a role for inducible nitric oxide in DEC's activity, DEC and ivermectin were administered to microfilaraemic iNOS(-/- )mice and their background strain (129/SV). Western blot analysis was used to determine any effect of DEC on the production of COX and inducible nitric-oxide synthase (iNOS) proteins. RESULTS: DEC administered alone to BALB/c mice resulted in a rapid and profound reduction in circulating microfilariae within five minutes of treatment. Microfilarial levels began to recover after 24 hours and returned to near pre-treatment levels two weeks later, suggesting that the sequestration of microfilariae occurs independently of parasite killing. Pre-treatment of animals with dexamethasone or indomethacin reduced DEC's efficacy by almost 90% or 56%, respectively, supporting a role for the arachidonic acid and cyclooxygenase pathways in vivo. Furthermore, experiments showed that treatment with DEC results in a reduction in the amount of COX-1 protein in peritoneal exudate cells. Additionally, in iNOS(-/- )mice infected with B. malayi microfilariae, DEC showed no activity, whereas the efficacy of another antifilarial drug, ivermectin, was unaffected. CONCLUSION: These results confirm the important role of the arachidonic acid metabolic pathway in DEC's mechanism of action in vivo and show that in addition to its effects on the 5-lipoxygenase pathway, it targets the cyclooxygenase pathway and COX-1. Moreover, we show for the first time that inducible nitric oxide is essential for the rapid sequestration of microfilariae by DEC

    Evidence against Wolbachia symbiosis in Loa loa

    Get PDF
    BACKGROUND: The majority of filarial nematode species are host to Wolbachia bacterial endosymbionts, although a few including Acanthocheilonema viteae, Onchocerca flexuosa and Setaria equina have been shown to be free of infection. Comparisons of species with and without symbionts can provide important information on the role of Wolbachia symbiosis in the biology of the nematode hosts and the contribution of the bacteria to the development of disease. Previous studies by electron microscopy and PCR have failed to detect intracellular bacterial infection in Loa loa. Here we use molecular and immunohistological techniques to confirm this finding. METHODS: We have used a combination of PCR amplification of bacterial genes (16S ribosomal DNA [rDNA], ftsZ and Wolbachia surface protein [WSP]) on samples of L. loa adults, third-stage larvae (L3) and microfilariae (mf) and immunohistology on L. loa adults and mf derived from human volunteers to determine the presence or absence of Wolbachia endosymbionts. Samples used in the PCR analysis included 5 adult female worms, 4 adult male worms, 5 mf samples and 2 samples of L3. The quality and purity of nematode DNA was tested by PCR amplification of nematode 5S rDNA and with diagnostic primers from the target species and used to confirm the absence of contamination from Onchocerca sp., Mansonella perstans, M. streptocerca and Wuchereria bancrofti. Immunohistology was carried out by light and electron microscopy on L. loa adults and mf and sections were probed with rabbit antibodies raised to recombinant Brugia malayi Wolbachia WSP. Samples from nematodes known to be infected with Wolbachia (O. volvulus, O. ochengi, Litomosoides sigmodontis and B. malayi) were used as positive controls and A. viteae as a negative control. RESULTS: Single PCR analysis using primer sets for the bacterial genes 16S rDNA, ftsZ, and WSP were negative for all DNA samples from L. loa. Positive PCR reactions were obtained from DNA samples derived from species known to be infected with Wolbachia, which confirmed the suitability of the primers and PCR conditions. The quality and purity of nematode DNA samples was verified by PCR amplification of 5S rDNA and with nematode diagnostic primers. Additional analysis by 'long PCR' failed to produce any further evidence for Wolbachia symbiosis. Immunohistology of L. loa adults and mf confirmed the results of the PCR with no evidence for Wolbachia symbiosis. CONCLUSION: DNA analysis and immunohistology provided no evidence for Wolbachia symbiosis in L. loa

    Onchocerca parasites and Wolbachia endosymbionts: evaluation of a spectrum of antibiotic types for activity against Onchocerca gutturosa in vitro

    Get PDF
    BACKGROUND: The filarial parasites of major importance in humans contain the symbiotic bacterium Wolbachia and recent studies have shown that targeting of these bacteria with antibiotics results in a reduction in worm viability, development, embryogenesis, and survival. Doxycycline has been effective in human trials, but there is a need to develop drugs that can be given for shorter periods and to pregnant women and children. The World Health Organisation-approved assay to screen for anti-filarial activity in vitro uses male Onchocerca gutturosa, with effects being determined by worm motility and viability as measured by reduction of MTT to MTT formazan. Here we have used this system to screen antibiotics for anti-filarial activity. In addition we have determined the contribution of Wolbachia depletion to the MTT reduction assay. METHODS: Adult male O. gutturosa were cultured on a monkey kidney cell (LLCMK 2) feeder layer in 24-well plates with antibiotics and antibiotic combinations (6 to 10 worms per group). The macrofilaricide CGP 6140 (Amocarzine) was used as a positive control. Worm viability was assessed by two methods, (i) motility levels and (ii) MTT/formazan colorimetry. Worm motility was scored on a scale of 0 (immotile) to 10 (maximum) every 5 days up to 40 days. On day 40 worm viability was evaluated by MTT/formazan colorimetry, and results were expressed as a mean percentage reduction compared with untreated control values at day 40. To determine the contribution of Wolbachia to the MTT assay, the MTT formazan formation of an insect cell-line (C6/36) with or without insect Wolbachia infection and treated or untreated with tetracycline was compared. RESULTS: Antibiotics with known anti-Wolbachia activity were efficacious in this system. Rifampicin (5 × 10(-5)M) was the most effective anti-mycobacterial agent; clofazimine (1.25 × 10(-5)M and 3.13 × 10(-6)M) produced a gradual reduction in motility and by 40 days had reduced worm viability. The other anti-mycobacterial drugs tested had limited or no activity. Doxycycline (5 × 10(-5)M) was filaricidal, but minocycline was more effective and at a lower concentration (5 × 10(-5)M and 1.25 × 10(-5)M). Inactive compounds included erythromycin, oxytetracycline, trimethoprim and sulphamethoxazole. The MTT assay on the insect cell-line showed that Wolbachia made a significant contribution to the metabolic activity within the cells, which could be reduced when they were exposed to tetracycline. CONCLUSION: The O. gutturosa adult male screen for anti-filarial drug activity is also valid for the screening of antibiotics for anti-Wolbachia activity. In agreement with previous findings, rifampicin and doxycycline were effective; however, the most active antibiotic was minocycline. Wolbachia contributed to the formation of MTT formazan in the MTT assay of viability and is therefore not exclusively a measure of worm viability and indicates that Wolbachia contributes directly to the metabolic activity of the nematode

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi

    No full text
    The human filarial nematode Brugia malayi contains an endosymbiotic bacterium, Wolbachia. We used real-time quantitative polymerase chain reaction (QPCR) and microscopy to investigate the population dynamics of the bacterium-nematode association. Two Wolbachia (wsp and ftsZ) and one nematode (gst) genes were amplified from all life-cycle stages of B. malayi and results expressed as gene copies per worm and as Wolbachia/nematode ratios. Since the genes were single copy and there was one genome per Wolbachia, the gene copy numbers were equivalent to the numbers of bacteria. These were similar inmicrofilariae and the mosquito-borne larval stages (L2 and L3), with the lowest ratios of Wolbachia/nematode DNA. However, within 7 days of infection of the mammalian host, bacteria had increased 600-fold and the bacteria/worm ratio was the highest of all life-cycle stages. The rapid multiplication Continued throughout L4 development, so that the major period of bacterial population growth occurred within 4 weeks of infection of the definitive host. Microscopy confirmed that there were few bacteria in mosquito-derived L3 but many, in large groups, in L4 collected 9 and 21 days after infection. In adult male worms up to 15 months of age. the bacterial populations were maintained, whilst in females, bacteria numbers increased as the worms matured and as the ovary and embryonic larval stages became infected. These results support the hypothesis that the bacteria are essential for larval development in the mammalian host and for the long-term survival of adult worms. (C) 2004 Elsevier B.V. All rights reserved

    Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-control led trial

    No full text
    Background Wolbachia endosymbionts of filarial nematodes are vital for larval development and adult-worm fertility and viability. This essential dependency on the bacterium for survival of the parasites has provided a new approach to treat filariasis with antibiotics. We used this strategy to investigate the effects of doxycycline treatment on the major cause of lymphatic filariasis, Wuchereria bancrofti. Methods We undertook a double-blind, randomised, placebo-controlled field trial of doxycycline (200 mg per day) for 8 weeks in 72 individuals infected with W bancrofti from Kimang'a village, Pangani, Tanzania. Participants were randomly assigned by block randomisation to receive capsules of doxycycline (n=34) or placebo (n=38). We assessed treatment efficacy by monitoring microfilaraemia, antigenaemia, and ultrasound detection of adult worms. Followup assessments were done at 5, 8, 11, and 14 months after the start of treatment. Analysis was per protocol. Findings One person from the doxycycline group died from HIV infection. Five (doxycycline) and 11 (placebo) individuals were absent at the time of ultrasound analysis. Doxycycline treatment almost completely eliminated microfilaraemia at 8-14 months' follow-up (for all timepoints p<0.001). Ultrasonography detected adult worms in only six (22%) of 27 individuals treated with doxycycline compared with 24 (88%) of 27 with placebo at 14 months after the start of treatment (p<0.0001). At the same timepoint, filarial antigenaemia in the doxycycline group fell to about half of that before treatment (p=0.015). Adverse events were few and mild. Interpretation An 8-week course of doxycycline is a safe and well-tolerated treatment for lymphatic filariasis with significant activity against adult worms and microfilaraemia

    Wolbachia- and Onchocerca volvulus-Induced Keratitis (River Blindness) Is Dependent on Myeloid Differentiation Factor 88

    No full text
    Endosymbiotic Wolbachia bacteria that infect the filarial nematode Onchocerca volvulus were previously found to have an essential role in the pathogenesis of river blindness. The current study demonstrates that corneal inflammation induced by Wolbachia or O. volvulus antigens containing Wolbachia is completely dependent on expression of myeloid differentiation factor 88
    corecore