37 research outputs found
Ion motions in molecular dynamics simulations on DNA
Counterions play a significant role in DNA structure and function, and molecular dynamics (MD) simulations offer the prospect of detailed description of the dynamical structure of ions at the molecular level. However, the motions of mobile counterions are notably slow to converge in MD on DNA. Obtaining accurate and reliable MD simulations requires knowing just how much sampling is required for convergence of each of the properties of interest. To address this issue, MD on a d(CGCGAATTCGCG) duplex in a dilute aqueous solution of water and 22 Na(+) counterions was performed until convergence was achieved. The calculated first shell ion occupancies and DNA–Na(+) radial distribution functions were computed as a function of time to assess convergence, and compared with relaxation times of the DNA internal parameters shift, slide, rise, tilt, roll, and twist. The sequence dependence of fractional occupancies of ions in the major and minor grooves of the DNA is examined, and the possibility of correlation between ion proximity and DNA minor groove widths is investigated
Mechanical properties of DNA-like polymers
The molecular structure of the DNA double helix has been known for 60 years, but we remain surprisingly ignorant of the balance of forces that determine its mechanical properties. The DNA double helix is among the stiffest of all biopolymers, but neither theory nor experiment has provided a coherent understanding of the relative roles of attractive base stacking forces and repulsive electrostatic forces creating this stiffness. To gain insight, we have created a family of double-helical DNA-like polymers where one of the four normal bases is replaced with various cationic, anionic or neutral analogs. We apply DNA ligase-catalyzed cyclization kinetics experiments to measure the bending and twisting flexibilities of these polymers under low salt conditions. Interestingly, we show that these modifications alter DNA bending stiffness by only 20%, but have much stronger (5-fold) effects on twist flexibility. We suggest that rather than modifying DNA stiffness through a mechanism easily interpretable as electrostatic, the more dominant effect of neutral and charged base modifications is their ability to drive transitions to helical conformations different from canonical B-form DNA