106 research outputs found

    A Blind Test of Computational Technique for Predicting the Likelihood of Peptide Sequences to Cyclize

    Get PDF
    An in silico computational technique for predicting peptide sequences that can be cyclized by cyanobactin macrocyclases, e.g., PatGmac, is reported. We demonstrate that the propensity for PatGmac-mediated cyclization correlates strongly with the free energy of the so-called pre-cyclization conformation (PCC), which is a fold where the cyclizing sequence C and N termini are in close proximity. This conclusion is driven by comparison of the predictions of boxed molecular dynamics (BXD) with experimental data, which have achieved an accuracy of 84%. A true blind test rather than training of the model is reported here as the in silico tool was developed before any experimental data was given, and no parameters of computations were adjusted to fit the data. The success of the blind test provides fundamental understanding of the molecular mechanism of cyclization by cyanobactin macrocyclases, suggesting that formation of PCC is the rate-determining step. PCC formation might also play a part in other processes of cyclic peptides production and on the practical side the suggested tool might become useful for finding cyclizable peptide sequences in general

    The population-wide risk-benefit profile of extending the primary COVID-19 vaccine course compared with an mRNA booster dose program

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record.β€―Data Availability Statement: The datasets analysed during the current study were sourced from and are available in the original publications referenced.The vaccination program is reducing the burden of COVID-19. However, recently, COVID-19 infections have been increasing across Europe, providing evidence that vaccine efficacy is waning. Consequently, booster doses are required to restore immunity levels. However, the relative risk–benefit ratio of boosters, compared to pursuing a primary course in the unvaccinated population, remains uncertain. In this study, a susceptible-exposed-infectious-recovered (SEIR) transmission model of SARS-CoV-2 was used to investigate the impact of COVID-19 vaccine waning on disease burden, the benefit of a booster vaccine program compared to targeting the unvaccinated population, and the population-wide risk–benefit profile of vaccination. Our data demonstrates that the rate of vaccine efficacy waning has a significant impact on COVID-19 hospitalisations with the greatest effect in populations with lower vaccination coverage. There was greater benefit associated with a booster vaccination strategy compared to targeting the unvaccinated population, once >50% of the population had received their primary vaccination course. The population benefits of vaccination (reduced hospitalisations, long-COVID and deaths) outweighed the risks of myocarditis/pericarditis by an order of magnitude. Vaccination is important in ending the COVID-19 pandemic sooner, and the reduction in hospitalisations, death and long-COVID associated with vaccination significantly outweigh any risks. Despite these obvious benefits some people are vaccine reluctant, and as such remain unvaccinated. However, when most of a population have been vaccinated, a focus on a booster vaccine strategy for this group is likely to offer greater value, than targeting the proportion of the population who choose to remain unvaccinated.Moderna, Inc

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    Β© The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Cardiovascular risk assessment scores for people with diabetes: a systematic review

    Get PDF
    People with type 2 diabetes have an increased risk of cardiovascular disease (CVD). Multivariate cardiovascular risk scores have been used in many countries to identify individuals who are at high risk of CVD. These risk scores include those originally developed in individuals with diabetes and those developed in a general population. This article reviews the published evidence for the performance of CVD risk scores in diabetic patients by: (1) examining the overall rationale for using risk scores; (2) systematically reviewing the literature on available scores; and (3) exploring methodological issues surrounding the development, validation and comparison of risk scores. The predictive performance of cardiovascular risk scores varies substantially between different populations. There is little evidence to suggest that risk scores developed in individuals with diabetes estimate cardiovascular risk more accurately than those developed in the general population. The inconsistency in the methods used in evaluation studies makes it difficult to compare and summarise the predictive ability of risk scores. Overall, CVD risk scores rank individuals reasonably accurately and are therefore useful in the management of diabetes with regard to targeting therapy to patients at highest risk. However, due to the uncertainty in estimation of true risk, care is needed when using scores to communicate absolute CVD risk to individuals

    Distinct Gene Number-Genome Size Relationships for Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate Genomes

    Get PDF
    The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log10-transformed protein-coding gene number (Yβ€²) versus log10-transformed genome size (Xβ€², genome size in kbp) were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Yβ€²β€Š=β€Šln(-46.200+22.678Xβ€², whereas non-eukaryotes a linear model, Yβ€²β€Š=β€Š0.045+0.977Xβ€², both with high significance (p<0.001, R2>0.91). Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%–1%) compared to higher and relatively stable percentages in prokaryotes and viruses (97%–47%). The eukaryotic regression models project that the smallest dinoflagellate genome (3Γ—106 kbp) contains 38,188 protein-coding (40,086 total) genes and the largest (245Γ—106 kbp) 87,688 protein-coding (92,013 total) genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species

    Phenotype Fingerprinting Suggests the Involvement of Single-Genotype Consortia in Degradation of Aromatic Compounds by Rhodopseudomonas palustris

    Get PDF
    Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions

    The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    No full text
    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton β€” actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement β€” have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence
    • …
    corecore