111 research outputs found
Seabird species vary in behavioural response to drone census
This is the final version of the article. Available from the publisher via the DOI in this record.Unmanned aerial vehicles (UAVs) provide an opportunity to rapidly census wildlife in remote areas while removing some of the hazards. However, wildlife may respond negatively to the UAVs, thereby skewing counts. We surveyed four species of Arctic cliff-nesting seabirds (glaucous gull Larus hyperboreus, Iceland gull Larus glaucoides, common murre Uria aalge and thick-billed murre Uria lomvia) using a UAV and compared censusing techniques to ground photography. An average of 8.5% of murres flew off in response to the UAV, but >99% of those birds were non-breeders. We were unable to detect any impact of the UAV on breeding success of murres, except at a site where aerial predators were abundant and several birds lost their eggs to predators following UAV flights. Furthermore, we found little evidence for habituation by murres to the UAV. Most gulls flew off in response to the UAV, but returned to the nest within five minutes. Counts of gull nests and adults were similar between UAV and ground photography, however the UAV detected up to 52.4% more chicks because chicks were camouflaged and invisible to ground observers. UAVs provide a less hazardous and potentially more accurate method for surveying wildlife. We provide some simple recommendations for their use.We thank T. Leonard and the Seabird Ecological Reserves Advisory Committee for permission to work at Witless
Bay, the Canadian Wildlife Service for permits to work at Newfoundland and Nunavut and the Government of
Nunavut for permits to work in Nunavut. Newfoundland and Labrador Murre Fund, Bird Studies Canada and
the Molson Foundation directly funded the work. An NSERC Discovery Grant, the Canada Research Chair in
Arctic Ecology and Polar Continental Shelf Project also helped fund the project. We thank T. Burke, G. Sorenson,
T. Lazarus and M. Guigueno for their help and J. Nakoolak for keeping us safe from bear
Predictors of metabolic monitoring among schizophrenia patients with a new episode of second-generation antipsychotic use in the Veterans Health Administration
<p>Abstract</p> <p>Background</p> <p>To examine the baseline metabolic monitoring (MetMon) for second generation antipsychotics (SGA) among patients with schizophrenia in the Veterans Integrated Service Network (VISN) 16 of the Veterans Health Administration (VHA).</p> <p>Methods</p> <p>VISN16 electronic medical records for 10/2002-08/2005 were used to identify patients with schizophrenia who received a new episode of SGA treatment after 10/2003, in which the VISN 16 baseline MetMon program was implemented. Patients who underwent MetMon (MetMon+: either blood glucose or lipid testing records) were compared with patients who did not (MetMon-), on patient characteristics and resource utilization in the year prior to index treatment episode. A parsimonious logistic regression was used to identify predictors for MetMon+ with adjusted odds ratios (OR) and 95% confidence intervals (CI).</p> <p>Results</p> <p>Out of 4,709 patients, 3,568 (75.8%) underwent the baseline MetMon. Compared with the MetMon- group, the MetMon+ patients were found more likely to have baseline diagnoses or mediations for diabetes (OR [CI]: 2.336 [1.846-2.955]), dyslipidemia (2.439 [2.029-2.932]), and hypertension (1.497 [1.287-1.743]), substance use disorders (1.460 [1.257-1.696]), or to be recorded as obesity (2.052 [1.724-2.443]). Increased likelihood for monitoring were positively associated with number of antipsychotics during the previous year (FGA: 1.434 [1.129-1.821]; SGA: 1.503 [1.290-1.751]). Other significant predictors for monitoring were more augmentation episodes (1.580 [1.145-2.179]), more outpatient visits (1.007 [1.002-1.013])), hospitalization days (1.011 [1.007-1.015]), and longer duration of antipsychotic use (1.001 [1.001-1.001]). Among the MetMon+ group, approximately 38.9% patient had metabolic syndrome.</p> <p>Discussion</p> <p>This wide time window of 180 days, although congruent with the VHA guidelines for the baseline MetMon process, needs to be re-evaluated and narrowed down, so that optimally the monitoring event occurs at the time of receiving a new episode of SGA treatment. Future research will examine whether or not patients prescribed an SGA are assessed for metabolic syndrome following the index episode of antipsychotic therapy, and whether or not such baseline and follow-up monitoring programs in routine care are cost-effective.</p> <p>Conclusion</p> <p>The baseline MetMon has been performed for a majority of the VISN 16 patients with schizophrenia prior to index SGA over the study period. Compared with MetMon- group, MetMon+ patients were more likely to be obese and manifest a more severe illness profile.</p
Involuntary Monitoring of Sound Signals in Noise Is Reflected in the Human Auditory Evoked N1m Response
Constant sound sequencing as operationalized by repeated stimulation with tones of the same frequency has multiple effects. On the one hand, it activates mechanisms of habituation and refractoriness, which are reflected in the decrease of response amplitude of evoked responses. On the other hand, the constant sequencing acts as spectral cueing, resulting in tones being detected faster and more accurately. With the present study, by means of magnetoencephalography, we investigated the impact of repeated tone stimulation on the N1m auditory evoked fields, while listeners were distracted from the test sounds. We stimulated subjects with trains of either four tones of the same frequency, or with trains of randomly assigned frequencies. The trains were presented either in a silent or in a noisy background. In silence, the patterns of source strength decline originating from repeated stimulation suggested both, refractoriness as well as habituation as underlying mechanisms. In noise, in contrast, there was no indication of source strength decline. Furthermore, we found facilitating effects of constant sequencing regarding the detection of the single tones as indexed by a shortening of N1m latency. We interpret our findings as a correlate of a bottom-up mechanism that is constantly monitoring the incoming auditory information, even when voluntary attention is directed to a different modality
Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy
Photoactivated localization microscopy analysis of chemotaxis receptors in bacteria suggests that the non-random organization of these proteins results from random self-assembly of clusters without direct cytoskeletal involvement or active transport
Identifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Although these responses have been well characterized physiologically, their underlying genetic basis remains unknown. We performed a genome scan to identify genes showing evidence of adaptation to hypoxia. We looked across each chromosome to identify genomic regions with previously unknown function with respect to altitude phenotypes. In addition, groups of genes functioning in oxygen metabolism and sensing were examined to test the hypothesis that particular pathways have been involved in genetic adaptation to altitude. Applying four population genetic statistics commonly used for detecting signatures of natural selection, we identified selection-nominated candidate genes and gene regions in these two populations (Andeans and Tibetans) separately. The Tibetan and Andean patterns of genetic adaptation are largely distinct from one another, with both populations showing evidence of positive natural selection in different genes or gene regions. Interestingly, one gene previously known to be important in cellular oxygen sensing, EGLN1 (also known as PHD2), shows evidence of positive selection in both Tibetans and Andeans. However, the pattern of variation for this gene differs between the two populations. Our results indicate that several key HIF-regulatory and targeted genes are responsible for adaptation to high altitude in Andeans and Tibetans, and several different chromosomal regions are implicated in the putative response to selection. These data suggest a genetic role in high-altitude adaption and provide a basis for future genotype/phenotype association studies necessary to confirm the role of selection-nominated candidate genes and gene regions in adaptation to altitude
Five endometrial cancer risk loci identified through genome-wide association analysis.
We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.I.T. is supported by Cancer Research UK and the Oxford Comprehensive Biomedical Research Centre. T.H.T.C. is supported by the Rhodes Trust and the Nuffield Department of Medicine. Funding for iCOGS infrastructure came from the European Community's Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692 and C8197/A16565), the US National Institutes of Health (R01 CA128978, U19 CA148537, U19 CA148065 and U19 CA148112), the US Department of Defense (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, the Susan G. Komen Foundation for the Cure, the Breast Cancer Research Foundation and the Ovarian Cancer Research Fund.
SEARCH recruitment was funded by a programme grant from Cancer Research UK (C490/A10124). Stage 1 and stage 2 case genotyping was supported by the NHMRC (552402 and 1031333). Control data were generated by the WTCCC, and a full list of the investigators who contributed to the generation of the data is available from the WTCCC website. We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by UK Medical Research Council grant G0000934 and Wellcome Trust grant 068545/Z/02; funding for this project was provided by the Wellcome Trust under award 085475. NSECG was supported by the European Union's Framework Programme 7 CHIBCHA grant and Wellcome Trust Centre for Human Genetics Core Grant 090532/Z/09Z, and CORGI was funded by Cancer Research UK.
BCAC is funded by Cancer Research UK (C1287/A10118 and C1287/A12014). OCAC is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07) and the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.356
Routine Outcomes Monitoring to Support Improving Care for Schizophrenia: Report from the VA Mental Health QUERI
In schizophrenia, treatments that improve outcomes have not been reliably disseminated. A major barrier to improving care has been a lack of routinely collected outcomes data that identify patients who are failing to improve or not receiving effective treatments. To support high quality care, the VA Mental Health QUERI used literature review, expert interviews, and a national panel process to increase consensus regarding outcomes monitoring instruments and strategies that support quality improvement. There was very good consensus in the domains of psychotic symptoms, side-effects, drugs and alcohol, depression, caregivers, vocational functioning, and community tenure. There are validated instruments and assessment strategies that are feasible for quality improvement in routine practice
COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease
Background:Chronic obstructive pulmonary disease (COPD) remains a major cause of morbidity and mortality. Present-day diagnostic criteria are largely based solely on spirometric criteria. Accumulating evidence has identified a substantial number of individuals without spirometric evidence of COPD who suffer from respiratory symptoms and/or increased morbidity and mortality. There is a clear need for an expanded definition of COPD that is linked to physiologic, structural (computed tomography [CT]) and clinical evidence of disease. Using data from the COPD Genetic Epidemiology study (COPDGene®), we hypothesized that an integrated approach that includes environmental exposure, clinical symptoms, chest CT imaging and spirometry better defines disease and captures the likelihood of progression of respiratory obstruction and mortality.
Methods:Four key disease characteristics - environmental exposure (cigarette smoking), clinical symptoms (dyspnea and/or chronic bronchitis), chest CT imaging abnormalities (emphysema, gas trapping and/or airway wall thickening), and abnormal spirometry - were evaluated in a group of 8784 current and former smokers who were participants in COPDGene® Phase 1. Using these 4 disease characteristics, 8 categories of participants were identified and evaluated for odds of spirometric disease progression (FEV1 > 350 ml loss over 5 years), and the hazard ratio for all-cause mortality was examined.
Results:Using smokers without symptoms, CT imaging abnormalities or airflow obstruction as the reference population, individuals were classified as Possible COPD, Probable COPD and Definite COPD. Current Global initiative for obstructive Lung Disease (GOLD) criteria would diagnose 4062 (46%) of the 8784 study participants with COPD. The proposed COPDGene® 2019 diagnostic criteria would add an additional 3144 participants. Under the new criteria, 82% of the 8784 study participants would be diagnosed with Possible, Probable or Definite COPD. These COPD groups showed increased risk of disease progression and mortality. Mortality increased in patients as the number of their COPD characteristics increased, with a maximum hazard ratio for all cause-mortality of 5.18 (95% confidence interval [CI]: 4.15-6.48) in those with all 4 disease characteristics.
Conclusions:A substantial portion of smokers with respiratory symptoms and imaging abnormalities do not manifest spirometric obstruction as defined by population normals. These individuals are at significant risk of death and spirometric disease progression. We propose to redefine the diagnosis of COPD through an integrated approach using environmental exposure, clinical symptoms, CT imaging and spirometric criteria. These expanded criteria offer the potential to stimulate both current and future interventions that could slow or halt disease progression in patients before disability or irreversible lung structural changes develop
The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
- …