192 research outputs found
Observation and Spectroscopy of a Two-Electron Wigner Molecule in an Ultra-Clean Carbon Nanotube
Coulomb interactions can have a decisive effect on the ground state of
electronic systems. The simplest system in which interactions can play an
interesting role is that of two electrons on a string. In the presence of
strong interactions the two electrons are predicted to form a Wigner molecule,
separating to the ends of the string due to their mutual repulsion. This
spatial structure is believed to be clearly imprinted on the energy spectrum,
yet to date a direct measurement of such a spectrum in a controllable
one-dimensional setting is still missing. Here we use an ultra-clean suspended
carbon nanotube to realize this system in a tunable potential. Using tunneling
spectroscopy we measure the excitation spectra of two interacting carriers,
electrons or holes, and identify seven low-energy states characterized by their
spin and isospin quantum numbers. These states fall into two multiplets
according to their exchange symmetries. The formation of a strongly-interacting
Wigner molecule is evident from the small energy splitting measured between the
two multiplets, that is quenched by an order of magnitude compared to the
non-interacting value. Our ability to tune the two-electron state in space and
to study it for both electrons and holes provides an unambiguous demonstration
of the fundamental Wigner molecule state.Comment: SP and FK contributed equally to this wor
Multi-shell gold nanowires under compression
Deformation properties of multi-wall gold nanowires under compressive loading
are studied. Nanowires are simulated using a realistic many-body potential.
Simulations start from cylindrical fcc(111) structures at T=0 K. After
annealing cycles axial compression is applied on multi-shell nanowires for a
number of radii and lengths at T=300 K. Several types of deformation are found,
such as large buckling distortions and progressive crushing. Compressed
nanowires are found to recover their initial lengths and radii even after
severe structural deformations. However, in contrast to carbon nanotubes
irreversible local atomic rearrangements occur even under small compressions.Comment: 1 gif figure, 5 ps figure
Statistics of the Charging Spectrum of a Two-Dimensional Coulomb Glass Island
The fluctuations of capacitance of a two-dimensional island are studied in
the regime of low electron concentration and strong disorder, when electrons
can be considered classical particles. The universal capacitance distribution
is found, with the dispersion being of the order of the average. This
distribution is shown to be closely related to the shape of the Coulomb gap in
the one-electron density of states of the island. Behavior of the the
capacitance fluctuations near the metal - insulator transition is discussed.Comment: 4 pages, LaTex, 4 Postscript figures are included Discussion of the
situation with screening by metallic gate is adde
Multiple Functionality in Nanotube Transistors
Calculations of quantum transport in a carbon nanotube transistor show that
such a device offers unique functionality. It can operate as a ballistic
field-effect transistor, with excellent characteristics even when scaled to 10
nm dimensions. At larger gate voltages, channel inversion leads to resonant
tunneling through an electrostatically defined nanoscale quantum dot. Thus the
transistor becomes a gated resonant tunelling device, with negative
differential resistance at a tunable threshold. For the dimensions considered
here, the device operates in the Coulomb blockade regime, even at room
temperature.Comment: To appear in Phys. Rev. Let
Analytic results for particles with interaction in two dimensions and an external magnetic field
The -dimensional quantum problem of particles (e.g. electrons) with
interaction in a two-dimensional parabolic potential
(e.g. quantum dot) and magnetic field , reduces exactly to solving a
-dimensional problem which is independent of and . An
exact, infinite set of relative mode excitations are obtained for any . The
problem reduces to that of a ficticious particle in a two-dimensional,
non-linear potential of strength , subject to a ficticious magnetic
field , the relative angular momentum.Comment: To appear in Physical Review Letters (in press). RevTeX file. Two
figures available from [email protected] or
[email protected]
Scanned Potential Microscopy of Edge and Bulk Currents in the Quantum Hall Regime
Using an atomic force microscope as a local voltmeter, we measure the Hall
voltage profile in a 2D electron gas in the quantum Hall (QH) regime. We
observe a linear profile in the bulk of the sample in the transition regions
between QH plateaus and a distinctly nonlinear profile on the plateaus. In
addition, localized voltage drops are observed at the sample edges in the
transition regions. We interpret these results in terms of theories of edge and
bulk currents in the QH regime.Comment: 4 pages, 5 figure
Conductance oscillations in tunnel-coupled quantum dots in the quantum Hall regime
We present measurements of transport through two tunnel-coupled quantum dots
of different sizes connected in series in a strong, variable, perpendicular
magnetic field. Double dot conductance was measured both as a function of
magnetic field, which was varied across the filling factor nu = 4 quantum Hall
plateau, and as a function of charge induced evenly on the two dots. The
conductance peaks undergo position shifts and height modulations as the
magnetic field is varied. These shifts and modulations form a pattern that
repeats over large ranges of magnetic field and with the addition of double dot
charge. The robust pattern repetition is consistent with a frequency locking
effect.Comment: 12 pages, 4 figure
Correlation effects in a quantum dot at high magnetic fields
We investigate the effects of electron correlations on the ground state
energy and the chemical potential of a droplet confined by a parabolic
potential at high magnetic fields. We demonstrate the importance of
correlations in estimating the transition field at which the first edge
reconstruction of the maximum density droplet occurs in the spin polarized
regime.Comment: 11 pages (revtex) 3 postscript figures are included at the end of the
tex file. To appear in Phys. Rev.
Energetics of Quantum Antidot States in Quantum Hall Regime
We report experiments on the energy structure of antidot-bound states. By
measuring resonant tunneling line widths as function of temperature, we
determine the coupling to the remote global gate voltage and find that the
effects of interelectron interaction dominate. Within a simple model, we also
determine the energy spacing of the antidot bound states, self consistent edge
electric field, and edge excitation drift velocity.Comment: 4 pages, RevTex, 5 Postscript figure
Absence of bimodal peak spacing distribution in the Coulomb blockade regime
Using exact diagonalization numerical methods, as well as analytical
arguments, we show that for the typical electron densities in chaotic and
disordered dots the peak spacing distribution is not bimodal, but rather
Gaussian. This is in agreement with the experimental observations. We attribute
this behavior to the tendency of an even number of electrons to gain on-site
interaction energy by removing the spin degeneracy. Thus, the dot is predicted
to show a non trivial electron number dependent spin polarization. Experimental
test of this hypothesis based on the spin polarization measurements are
proposed.Comment: 13 pages, 3 figures, accepted for publication in PRL - a few small
change
- …