228 research outputs found
Resolved Spectroscopy of M Dwarf/L Dwarf Binaries. II. 2MASS J 17072343-0558249AB
We present IRTF SpeX observations of the M/L binary system 2MASS
J17072343-0558249. SpeX imaging resolves the system into a 1"01+/-0.17 visual
binary in which both components have red near infrared colors. Resolved
low-resolution (R~150) 0.8-2.5 micron spectroscopy reveals strong H2O, CO and
FeH bands and alkali lines in the spectra of both components, characteristic of
late-type M and L dwarfs. A comparison to a sample of late-type field dwarf
spectra indicates spectral types M9 and L3. Despite the small proper motion of
the system (0"100+/-0"009 yr^{-1}), imaging observations over 2.5 yr provide
strong evidence that the two components share common proper motion. Physical
association is also likely due to the small spatial volume occupied by the two
components (based on spectrophotometric distances estimates of 15+/-1 pc) as
compared to the relatively low spatial density of low mass field stars. The
projected separation of the system is 15+/-3 AU, similar to other late-type M
and L binaries. Assuming a system age of 0.5-5 Gyr, we estimate the masses of
the binary components to be 0.072-0.083 and 0.064-0.077 M_sun, with an orbital
period of roughly 150-300 yr. While this is nominally too long a baseline for
astrometric mass measurements, the proximity and relatively wide angular
separation of the 2MASS J1707-0558AB pair makes it an ideal system for studying
the M dwarf/L dwarf transition at a fixed age and metallicity
Resolved Spectroscopy of M Dwarf/L Dwarf Binaries. I. DENIS J220002.05-303832.9AB
We present the discovery of the common proper motion M9 + L0 binary DENIS
J220002.05-303832.9AB, identified serendipitously with the SpeX near infrared
imager/spectrograph. Spectral types are derived from resolved near infrared
spectroscopy of the well-separated (1"09+/-0"06) components and comparison to
equivalent data for M and L dwarf spectral standards. Physical association is
deduced from the angular proximity of the sources, their common proper motion
and their similar spectrophotometric distances (35+/-2 pc). The estimated
distance of this pair implies a projected separation of 38+/-3 AU, wider than
typical separations for other M dwarf/L dwarf binaries, but consistent with the
maximum separation/total system mass trend previously identified by Burgasser
et al. (2003). We discuss the DENIS 2200-3038AB system in context with other
low mass binaries, and its role in studying dust formation processes and
activity trends across the transition between the M and L dwarf spectral
classes.Comment: 11 pages, 3 figures, accepted for publication in Astronomical Journa
Solar Contamination in Extreme-precision Radial-velocity Measurements: Deleterious Effects and Prospects for Mitigation
Solar contamination, due to moonlight and atmospheric scattering of sunlight, can cause systematic errors in stellar radial velocity (RV) measurements that significantly detract from the ~10 cm s−1 sensitivity required for the detection and characterization of terrestrial exoplanets in or near habitable zones of Sun-like stars. The addition of low-level spectral contamination at variable effective velocity offsets introduces systematic noise when measuring velocities using classical mask-based or template-based cross-correlation techniques. Here we present simulations estimating the range of RV measurement error induced by uncorrected scattered sunlight contamination. We explore potential correction techniques, using both simultaneous spectrometer sky fibers and broadband imaging via coherent fiber imaging bundles, that could reliably reduce this source of error to below the photon-noise limit of typical stellar observations. We discuss the limitations of these simulations, the underlying assumptions, and mitigation mechanisms. We also present and discuss the components designed and built into the NEID (NN-EXPLORE Exoplanet Investigations with Doppler spectroscopy) precision RV instrument for the WIYN 3.5 m telescope, to serve as an ongoing resource for the community to explore and evaluate correction techniques. We emphasize that while "bright time" has been traditionally adequate for RV science, the goal of 10 cm s−1 precision on the most interesting exoplanetary systems may necessitate access to darker skies for these next-generation instruments
Characterization of the gaseous companion {\kappa} Andromedae b: New Keck and LBTI high-contrast observations
We previously reported the direct detection of a low mass companion at a
projected separation of 55+-2 AU around the B9 type star {\kappa} Andromedae.
The properties of the system (mass ratio, separation) make it a benchmark for
the understanding of the formation and evolution of gas giant planets and brown
dwarfs on wide-orbits. We present new angular differential imaging (ADI) images
of the Kappa Andromedae system at 2.146 (Ks), 3.776 (L'), 4.052 (NB 4.05) and
4.78 {\mu}m (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more
accurate near-infrared photometry of the star with the MIMIR instrument. We
derive a more accurate J = 15.86 +- 0.21, H = 14.95 +- 0.13, Ks = 14.32 +- 0.09
mag for {\kappa} And b. We redetect the companion in all our high contrast
observations. We confirm previous contrasts obtained at Ks and L' band. We
derive NB 4.05 = 13.0 +- 0.2 and M' = 13.3 +- 0.3 mag and estimate
Log10(L/Lsun) = -3.76 +- 0.06. We build the 1-5 microns spectral energy
distribution of the companion and compare it to seven PHOENIX-based atmospheric
models in order to derive Teff = 1900+100-200 K. Models do not set constrains
on the surface gravity. ``Hot-start" evolutionary models predict masses of
14+25-2 MJup based on the luminosity and temperature estimates, and considering
a conservative age range for the system (30+120-10 Myr). ``warm-start"
evolutionary tracks constrain the mass to M >= 11 MJup. Therefore, the mass of
{\kappa} Andromedae b mostly falls in the brown-dwarf regime, due to remaining
uncertainties in age and mass-luminosity models. According to the formation
models, disk instability in a primordial disk could account for the position
and a wide range of plausible masses of {\kappa} And b.Comment: 20 pages, 16 figures, accepted for publication in Astronomy and
Astrophysics on August 6, 201
Detection of p-mode Oscillations in HD 35833 with NEID and TESS
We report the results of observations of p-mode oscillations in the G0
subgiant star HD 35833 in both radial velocities and photometry with NEID and
TESS, respectively. We achieve separate, robust detections of the oscillation
signal with both instruments (radial velocity amplitude m s, photometric amplitude
ppm, frequency of maximum power Hz, and
mode spacing Hz) as well as a non-detection in
a TESS sector concurrent with the NEID observations. These data shed light on
our ability to mitigate the correlated noise impact of oscillations with radial
velocities alone, and on the robustness of commonly used asteroseismic scaling
relations. The NEID data are used to validate models for the attenuation of
oscillation signals for exposure times , and we compare
our results to predictions from theoretical scaling relations and find that the
observed amplitudes are weaker than expected by , hinting at gaps in
the underlying physical models.Comment: 19 Pages, 14 Figures, Appendi
Recommended from our members
Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora
Background
The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora - South Africa's biodiversity hotspot - through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years.
Results
Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology.
Conclusions
Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record
Characterization of the Gaseous Companion k Andromedae B* New Keck and LBTI High-contrast Observations
Context. We previously reported the direct detection of a low mass companion at a projected separation of 55+/-2 astronomical units around the B9 type star kappa Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. Aims. We present new angular differential imaging (ADI) images of the system at 2.146 (K(sub s)), 3.776 (L'), 4.052 (NB 4.05) and 4.78 micrometers (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We aim to determine the near-infrared spectral energy distribution (SED) of the companion and use it to characterize the object. Methods. We used analysis methods adapted to ADI to extract the companion flux. We compared the photometry of the object to reference young/old objects and to a set of seven PHOENIX-based atmospheric models of cool objects accounting for the formation of dust. We used evolutionary models to derive mass estimates considering a wide range of plausible initial conditions. Finally, we used dedicated formation models to discuss the possible origin of the companion. Results. We derive a more accurate J = 15.86 +/- 0.21, H = 14.95 +/- 0.13, K(sub s) = 14.32 +/- 0.09 mag for kappa And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at K(sub s) and L' band. We derive NB 4.05 = 13.0 +/- 0.2 and M' = 13.3 +/- 0.3 mag and estimate Log(base 10)(L/solar luminosity) = 3.76 +/- 0.06. Atmospheric models yield T(sub eff) = 1900(+100/200) K. They do not set constrains on the surface gravity. "Hot-start" evolutionary models predict masses of 14(+25/2) Jupiter mass based on the luminosity and temperature estimates, and considering a conservative age range for the system (30(+120/10) million years). "warm-start" evolutionary tracks constrain the mass to M greater than or equal to 11 Jupiter mass. Conclusions. The mass of kappa Andromedae b mostly falls in the brown-dwarf regime, due to remaining uncertainties in age and mass-luminosity models. According to the formation models, disk instability in a primordial disk could account for the position and a wide range of plausible masses of kappa and b
- …