125 research outputs found

    A generalized noise variance analysis model and its application to the characterization of 1/f noise

    Get PDF
    We present a novel generalized model for the analysis of noise with a known spectral density. This model is particularly appropriate for the analysis of noise with a 1/f^a distribution in a homodyne interferometer. The noise model reveals that, for α>1, 1/f^a noise significantly impacts the homodyne signal-to-noise ratio (SNR) for integration times that near a characteristic time, beyond which the SNR will no longer significantly improve with increasing integration time. We experimentally verify our theoretical findings with a set of experiments employing a quadrature homodyne optical coherence tomography (OCT) system, finding good agreement. The characteristic integration time is measured to be approximately 2 ms for our system. Additionally, we find that the 1/f noise characteristics, including the exponent, α, as well as the characteristic integration time, are system and photodetector dependent

    SNR enhancement through phase dependent signal reconstruction algorithms for phase separated interferometric signals

    Get PDF
    We report several signal reconstruction algorithms for processing phase separated homodyne interferometric signals. Methods that take advantage of the phase of the signal are experimentally shown to achieve a signal-to-noise ratio (SNR) improvement of up to 5 dB over commonly used algorithms. To begin, we present a derivation of the SNR resulting from five image reconstruction algorithms in the context of a 3x3 fiber-coupler based homodyne optical coherence tomography (OCT) system, and clearly show the improvement in SNR associated with phase-based algorithms. Finally, we experimentally verify this improvement and demonstrate the enhancement in contrast and improved image quality afforded by these algorithms through homodyne OCT imaging of a Xenopus laevis tadpole. These algorithms can be generally applied in signal extraction processing where multiple phase separated measurements are available

    Turning Tissues Transparent by Optical Phase Conjugation

    Get PDF
    We recently implemented a digital optical phase conjugation mirror by combining a spatial light modulator and a digital holography system. This system provides us with additional flexibility in modifying the scattered wavefront for TSOPC transmission experiments. These results are discussed in detail in this presentation

    Manual-scanning optical coherence tomography probe based on position tracking

    Get PDF
    A method based on position tracking to reconstruct images for a manual-scanning optical coherence tomography (OCT) probe is proposed and implemented. The method employs several feature points on a hand-held probe and a camera to track the device's pose. The continuous device poses tracking, and the collected OCT depth scans can then be combined to render OCT images. The tracking accuracy of the system was characterized to be about 6 μm along two axes and 19 μm along the third. A phantom target was used to validate the method. In addition, we report OCT images of a 54-stage Xenopus laevis tadpole acquired by manual scanning

    Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent

    Get PDF
    The use of indocyanine green (ICG), a U.S. Food and Drug Administration approved dye, in a pump-probe scheme for molecular contrast optical coherence tomography (MCOCT) is proposed and demonstrated for the first time. In the proposed pump-probe scheme, an optical coherence tomography (OCT) scan of the sample containing ICG is first acquired. High fluence illumination (∼190kJ/cm^2) is then used to permanently photobleach the ICG molecules—resulting in a permanent alteration of the overall absorption of the ICG. A second OCT scan is next acquired. The difference of the two OCT scans is used to determine the depth resolved distribution of ICG within a sample. To characterize the extent of photobleaching in different ICG solutions, we determine the cumulative probability of photobleaching, ϕ_(B,cum), defined as the ratio of the total photobleached ICG molecules to the total photons absorbed by the ground state molecules. An empirical study of ICG photobleaching dynamics shows that ϕ_(B,cum) decreases with fluence as well as with increasing dye concentration. The quantity ϕ_(B,cum) is useful for estimating the extent of photobleaching in an ICG sample (MCOCT contrast) for a given fluence of the pump illumination. The paper also demonstrates ICG-based MCOCT imaging in tissue phantoms as well as within stage 54 Xenopus laevis

    Fundamental sensitivity limit imposed by dark 1/f noise in the low optical signal detection regime

    Get PDF
    The impact of dark 1/f noise on fundamental signal sensitivity in direct low optical signal detection is an understudied issue. In this theoretical manuscript, we study the limitations of an idealized detector with a combination of white noise and 1/f noise, operating in detector dark noise limited mode. In contrast to white noise limited detection schemes, for which there is no fundamental minimum signal sensitivity limit, we find that the 1/f noise characteristics, including the noise exponent factor and the relative amplitudes of white and 1/f noise, set a fundamental limit on the minimum signal that such a detector can detect

    Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells

    Get PDF
    We present spectral domain phase microscopy (SDPM) as a new tool for measurements at the cellular scale. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity in real time. Our goal was to use SDPM to investigate the mechanical properties of the cytoskeleton of MCF-7 cells. Magnetic tweezers were designed to apply a vertical force to ligand-coated magnetic beads attached to integrin receptors on the cell surfaces. SDPM was used to resolve cell surface motions induced by the applied stresses. The cytoskeletal response to an applied force is shown for both normal cells and those with compromised actin networks due to treatment with Cytochalasin D. The cell response data were fit to several models for cytoskeletal rheology, including one- and two-exponential mechanical models, as well as a power law. Finally, we correlated displacement measurements to physical characteristics of individual cells to better compare properties across many cells, reducing the coefficient of variation of extracted model parameters by up to 50%

    Methods and application areas of endoscopic optical coherence tomography

    Get PDF
    We review the current state of research in endoscopic optical coherence tomography (OCT). We first survey the range of available endoscopic optical imaging techniques. We then discuss the various OCT-based endoscopic methods that have thus far been developed. We compare the different endoscopic OCT methods in terms of their scan performance. Next, we examine the application range of endoscopic OCT methods. In particular, we look at the reported utility of the methods in digestive, intravascular, respiratory, urinary and reproductive systems. We highlight two additional applications—biopsy procedures and neurosurgery—where sufficiently compact OCT-based endoscopes can have significant clinical impacts
    • …
    corecore