257 research outputs found

    Exposures to Airborne Particulate Matter and Adverse Perinatal Outcomes: A Biologically Plausible Mechanistic Framework for Exploring Potential Effect Modification by Nutrition

    Get PDF
    OBJECTIVES: The specific objectives are threefold: to describe the biologically plausible mechanistic pathways by which exposure to particulate matter (PM) may lead to the adverse perinatal outcomes of low birth weight (LBW), intrauterine growth retardation (IUGR), and preterm delivery (PTD); review the evidence showing that nutrition affects the biologic pathways; and explain the mechanisms by which nutrition may modify the impact of PM exposure on perinatal outcomes. METHODS: We propose an interdisciplinary conceptual framework that brings together maternal and infant nutrition, air pollution exposure assessment, and cardiopulmonary and perinatal epidemiology. Five possible albeit not exclusive biologic mechanisms have been put forth in the emerging environmental sciences literature and provide corollaries for the proposed framework. CONCLUSIONS: Protecting the environmental health of mothers and infants remains a top global priority. The existing literature indicates that the effects of PM on LBW, PTD, and IUGR may manifest through the cardiovascular mechanisms of oxidative stress, inflammation, coagulation, endothelial function, and hemodynamic responses. PM exposure studies relating mechanistic pathways to perinatal outcomes should consider the likelihood that biologic responses and adverse birth outcomes may be derived from both PM and non-PM sources (e.g., nutrition). In the concluding section, we present strategies for empirically testing the proposed model and developing future research efforts

    The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections

    Get PDF
    Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013 The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate cocaine-induced changes in the concentrations of different redox forms of cysteine (Cys) and homocysteine (Hcy), and products of anaerobic Cys metabolism, i.e., labile, reduced sulfur (LS) in the rat plasma. The above-mentioned parameters were determined after i.p. acute and subchronic cocaine treatment as well as following i.v. cocaine self-administration using the yoked procedure. Additionally, Cys, Hcy, and LS levels were measured during the 10-day extinction training in rats that underwent i.v. cocaine administration. Acute i.p. cocaine treatment increased the total and protein-bound Hcy contents, decreased LS, and did not change the concentrations of Cys fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered the total and protein-bound Cys concentrations while LS level was unchanged. Cocaine self-administration enhanced the total and protein-bound Hcy levels, decreased LS content, and did not affect the Cys fractions. On the other hand, yoked cocaine infusions did not alter the concentration of Hcy fractions while decreased the total and protein-bound Cys and LS content. This extinction training resulted in the lack of changes in the examined parameters in rats with a history of cocaine self-administration while in the yoked cocaine group an increase in the plasma free Cys fraction and LS was seen. Our results demonstrate for the first time that cocaine does evoke significant changes in homeostasis of thiol amino acids Cys and Hcy, and in some products of anaerobic Cys metabolism, which are dependent on the way of cocaine administration

    Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Get PDF
    BACKGROUND: Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS) deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. METHODS: To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8) with 0.6% dl-homocysteine (hCySH) for the first 8 weeks of life in comparison to controls (n = 10), and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. RESULTS: hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca(2+)/PO(4)(3- )and lower Ca(2+)/CO(3)(2- )molar ratios than in controls. Mineral crystallization was unchanged. CONCLUSION: In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic disease is small. We also conclude that the hCySH-supplemented chick is a promising model for study of the connective tissue abnormalities associated with homocystinuria and an important alternative model to the CBS knock-out mouse

    S-adenosylmethionine and S-adenosylhomocysteine levels in the aging brain of APP/PS1 Alzheimer mice

    Get PDF
    Hyperhomocysteinemia and factors of homocysteine metabolism, S-adenosylhomocysteine (AdoHcy) and S-adenosylmethionine (AdoMet), may play a role in Alzheimer’s disease (AD). With liquid-chromatography-tandem-mass-spectrometry AdoMet and AdoHcy were determined in brains of 8- and 15-month-old APP/PS1 Alzheimer mice, and their possible roles in AD brains investigated. The finding that AdoMet levels do not differ between the genotypes in (young) 8-month-old mice, but are different in (older) 15-month-old APP/PS1 mice compared to their wild-type littermates, suggests that alterations in AdoMet are a consequence of AD pathology rather than a cause. During aging, AdoMet levels decreased in the brains of wild-type mice, whereas AdoHcy levels diminished in both wild type and APP/PS1 mice. The finding that AdoMet levels in APP/PS1 mice are not decreased during aging (in contrast to wild-type mice), is probably related to less demand due to neurodegeneration. No effect of the omega-3 fatty acid docosahexaenoic acid (DHA) or cholesterol-enriched diets on AdoMet or AdoHcy levels were found

    The effect on endothelial function of vitamin C during methionine induced hyperhomocysteinaemia

    Get PDF
    BACKGROUND: Manipulation of total homocysteine concentration with oral methionine is associated with impairment of endothelial-dependent vasodilation. This may be caused by increased oxidative stress. Vitamin C is an aqueous phase antioxidant vitamin and free radical scavenger. We hypothesised that if the impairment of endothelial function related to experimental hyperhomocysteinaemia was free radically mediated then co-administration of vitamin C should prevent this. METHODS: Ten healthy adults took part in this crossover study. Endothelial function was determined by measuring forearm blood flow (FBF) in response to intra-arterial infusion of acetylcholine (endothelial-dependent) and sodium nitroprusside (endothelial-independent). Subjects received methionine (100 mg/Kg) plus placebo tablets, methionine plus vitamin C (2 g orally) or placebo drink plus placebo tablets. Study drugs were administered at 9 am on each study date, a minimum of two weeks passed between each study. Homocysteine (tHcy) concentration was determined at baseline and after 4 hours. Endothelial function was determined at 4 hours. Responses to the vasoactive substances are expressed as the area under the curve of change in FBF from baseline. Data are mean plus 95% Confidence Intervals. RESULTS: Following oral methionine tHcy concentration increased significantly versus placebo. At this time endothelial-dependent responses were significantly reduced compared to placebo (31.2 units [22.1-40.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo). Endothelial-independent responses were unchanged. Co-administration of vitamin C did not alter the increase in homocysteine or prevent the impairment of endothelial-dependent responses (31.4 [19.5-43.3] vs. 46.4 units [42.0-50.8], p < 0.05 vs. Placebo) CONCLUSIONS: This study demonstrates that methionine increased tHcy with impairment of the endothelial-dependent vasomotor responses. Administration of vitamin C did not prevent this impairment and our results do not support the hypothesis that the endothelial impairment is mediated by adverse oxidative stress

    Development of a healthy biscuit: an alternative approach to biscuit manufacture

    Get PDF
    OBJECTIVE: Obesity (BMI >30) and related health problems, including coronary heart disease (CHD), is without question a public health concern. The purpose of this study was to modify a traditional biscuit by the addition of vitamin B(6), vitamin B(12), Folic Acid, Vitamin C and Prebiotic fibre, while reducing salt and sugar. DESIGN: Development and commercial manufacture of the functional biscuit was carried out in collaboration with a well known and respected biscuit manufacturer of International reputation. The raw materials traditionally referred to as essential in biscuit manufacture, i.e. sugar and fat, were targeted for removal or reduction. In addition, salt was completely removed from the recipe. PARTICIPANTS: University students of both sexes (n = 25) agreed to act as subjects for the study. Ethical approval for the study was granted by the University ethics committee. The test was conducted as a single blind crossover design, and the modified and traditional biscuits were presented to the subjects under the same experimental conditions in a random fashion. RESULTS: No difference was observed between the original and the modified product for taste and consistency (P > 0.05). The modified biscuit was acceptable to the consumer in terms of eating quality, flavour and colour. Commercial acceptability was therefore established. CONCLUSION: This study has confirmed that traditional high-fat and high-sugar biscuits which are not associated with healthy diets by most consumers can be modified to produce a healthy alternative that can be manufactured under strict commercial conditions

    Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects

    Get PDF
    This overview addresses homocysteine and folate metabolism. Its functions and complexity are described, leading to explanations why disturbed homocysteine and folate metabolism is implicated in many different diseases, including congenital birth defects like congenital heart disease, cleft lip and palate, late pregnancy complications, different kinds of neurodegenerative and psychiatric diseases, osteoporosis and cancer. In addition, the inborn errors leading to hyperhomocysteinemia and homocystinuria are described. These extreme human hyperhomocysteinemia models provide knowledge about which part of the homocysteine and folate pathways are linked to which disease. For example, the very high risk for arterial and venous occlusive disease in patients with severe hyperhomocysteinemia irrespective of the location of the defect in remethylation or transsulphuration indicates that homocysteine itself or one of its “direct” derivatives is considered toxic for the cardiovascular system. Finally, common diseases associated with elevated homocysteine are discussed with the focus on cardiovascular disease and neural tube defects

    Exploratory study of plasma total homocysteine and its relationship to short-term outcome in acute ischaemic stroke in Nigerians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperhomocysteinemia is a potentially modifiable risk factor for stroke, and may have a negative impact on the course of ischaemic stroke. The role of hyperhomocysteinemia as it relates to stroke in Africans is still uncertain. The objective of this study was to determine the prevalence and short-term impact of hyperhomocysteinemia in Nigerians with acute ischaemic stroke. We hypothesized that Hcy levels are significantly higher than in normal controls, worsen stroke severity, and increase short-term case fatality rates following acute ischaemic stroke.</p> <p>Methods</p> <p>The study employed both a case-control and prospective follow-up design to study hospitalized adults with first – ever acute ischaemic stroke presenting within 48 hours of onset. Clinical histories, neurological evaluation (including National Institutes of Health Stroke Scale (NIHSS) scores on admission) were documented. Total plasma Hcy was determined on fasting samples drawn from controls and stroke cases (within 24 hours of hospitalization). Outcome at 4 weeks was assessed in stroke patients using the Glasgow Outcome Scale (GOS).</p> <p>Results</p> <p>We evaluated 155 persons (69 acute ischaemic stroke and 86 healthy controls). The mean age ± SD of the cases was 58.8 ± 9.8 years, comparable to that of controls which was 58.3 ± 9.9 years (T = 0.32; P = 0.75). The mean duration of stroke (SD) prior to hospitalization was 43.5 ± 38.8 hours, and mean admission NIHSS score was 10.1 ± 7.7. Total fasting Hcy in stroke patients was 10.2 ± 4.6 umol/L and did not differ significantly from controls (10.1 ± 3.6 umol/L; P = 0.88). Hyperhomocysteinemia, defined by plasma Hcy levels > 90<sup>th </sup>percentile of controls (>14.2 umol/L in women and >14.6 umol/L in men), was present in 7 (10.1%) stroke cases and 11 (12.8%) controls (odds ratio 0.86, 95% confidence interval 0.31 – 2.39; P > 0.05). In multiple regression analysis admission NIHSS score (but not plasma Hcy) was a significant determinant of 4 week outcome measured by GOS score (P < 0.0001).</p> <p>Conclusion</p> <p>This exploratory study found that homocysteine levels are not significantly elevated in Nigerians with acute ischaemic stroke, and admission Hcy level is not a determinant of short-term (4 week) stroke outcome.</p

    Homocysteine, Grey Matter and Cognitive Function in Adults with Cardiovascular Disease

    Get PDF
    Background: Elevated total plasma homocysteine (tHcy) has been associated with cognitive impairment, vascular disease and brain atrophy. Methods: We investigated 150 volunteers to determine if the association between high tHcy and cerebral grey matter volume and cognitive function is independent of cardiovascular disease. Results: Participants with high tHcy ($15 mmol/L) showed a widespread relative loss of grey matter compared with people with normal tHcy, although differences between the groups were minimal once the analyses were adjusted for age, gender, diabetes, hypertension, smoking and prevalent cardiovascular disease. Individuals with high tHcy had worse cognitive scores across a range of domains and less total grey matter volume, although these differences were not significant in the adjusted models. Conclusions: Our results suggest that the association between high tHcy and loss of cerebral grey matter volume and decline in cognitive function is largely explained by increasing age and cardiovascular diseases and indicate that th
    corecore