258 research outputs found

    An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b

    Get PDF
    GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple JWST GTO programs. Here, we report the first space-based optical transmission spectrum of the planet using two HST/STIS transit observations from 0.53-1.03 microns. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 microns. The spectrum is indicative of moderate to high metallicity (~100-1000x solar) while moderate metallicity scenarios (~100x solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 microns in the transmission spectra of 3 different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b's atmosphere.Comment: 20 pages, 11 figures, 5 tables, Accepted to AJ. A full version of table 1 is included as table1_mrt.tx

    Evaluando el rendimiento en la tabla de golpeo del makiwara

    Get PDF
    No hay en la literatura estudios que cuantifiquen las características del impacto en las tablas del makiwara. Lógicamente, la evaluación de las características mecánicas de varios diseños de tablas de makiwara debería ser un paso inicial en la determinación de la validez del makiwara como medio de desarrollo de la técnica del kárate. Consecuentemente, el propósito de este estudio fue determinar la dureza de los diseños del makiwara que se estrecha y en tabla apilada, utilizando técnicas estáticas de carga para evaluar su idoneidad para practicantes de diferentes niveles. Cuando nuestros resultados se observan en términos de progresión del entrenamiento, parece que el diseño apilado de fresno, más flexible, se ajusta mejor al principiante, mientras que el modelo que se estrecha de encina, más rígido, se ajusta mejor al experto

    Evaluating Makiwara Punching Board Performance

    Get PDF
    [ES] No hay en la literatura estudios que cuantifiquen las características del impacto en las tablas del makiwara. Lógicamente, la evaluación de las características mecánicas de varios diseños de tablas de makiwara debería ser un paso inicial en la determinación de la validez del makiwara como medio de desarrollo de la técnica del kárate. Consecuentemente, el propósito de este estudio fue determinar la dureza de los diseños del makiwara que se estrecha y en tabla apilada, utilizando técnicas estáticas de carga para evaluar su idoneidad para practicantes de diferentes niveles. Cuando nuestros resultados se observan en términos de progresión del entrenamiento, parece que el diseño apilado de fresno, más flexible, se ajusta mejor al principiante, mientras que el modelo que se estrecha de encina, más rígido, se ajusta mejor al experto

    The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b

    Full text link
    We present photometry of 13 transits of XO-3b, a massive transiting planet on an eccentric orbit. Previous data led to two inconsistent estimates of the planetary radius. Our data strongly favor the smaller radius, with increased precision: R_p = 1.217 +/- 0.073 R_Jup. A conflict remains between the mean stellar density determined from the light curve, and the stellar surface gravity determined from the shapes of spectral lines. We argue the light curve should take precedence, and revise the system parameters accordingly. The planetary radius is about 1 sigma larger than the theoretical radius for a hydrogen-helium planet of the given mass and insolation. To help in planning future observations, we provide refined transit and occultation ephemerides.Comment: To appear in ApJ [22 pages

    A Precise Water Abundance Measurement for the Hot Jupiter WASP-43b

    Full text link
    The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the Solar System giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 MJupM_\mathrm{Jup} short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5x solar at 1 σ\sigma confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the Solar System of lower metal enrichment for higher planet masses.Comment: Accepted to ApJL; this version contains three supplemental figures that are not included in the published paper. See also our companion paper "Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy" by Stevenson et a

    A Straight and Narrow Ionized Filament

    Get PDF
    We report the discovery of a extremely narrow, extremely linear, ionized filament. The filament is 2.5 degrees long and has an Hα\alpha surface brightness of 0.5 rayleighs. The filament is approximately ``Y'' shaped. The widest separation of the two diagonal segments is 5 arcminutes. We discuss four possible origins for this feature: (1) an extremely low density, nearby jet, (2) an unusually linear filament associated with some large-scale nearby nebula, perhaps even the Local Bubble, (3) an ionized trail left by mechanical input from a star or compact object moving through the ISM, or (4) an ionized trail left by photoionization (``Fossil \stromgren Trail'') from a star or compact object. We favor this last hypothesis, and derive some of the basic properties for an ionized trail. Regardless of whether this latter hypothesis applies to this specific filament, the basic properties of such a trail, its length, width, and brightness, are interesting, predictable, and should be observable behind some white dwarfs. We suggest future tests for ascertaining the origin of this filament, and discuss how this structure might be useful to constrain the thermal and velocity structure of the nearby interstellar medium.Comment: 18 pages, 5 figures, to appear in AJ, 2001; astroph abstract is abridge

    A Robotic Wide-Angle H-Alpha Survey of the Southern Sky

    Get PDF
    We have completed a robotic wide-angle imaging survey of the southern sky (declination less than +15 degrees) at 656.3 nm wavelength, the H-alpha emission line of hydrogen. Each image of the resulting Southern H-Alpha Sky Survey Atlas (SHASSA) covers an area of the sky 13 degrees square at an angular resolution of approximately 0.8 arcminute, and reaches a sensitivity level of 2 rayleigh (1.2 x 10^-17 erg cm^-2 s^-1 arcsec^-2) per pixel, corresponding to an emission measure of 4 cm^-6 pc, and to a brightness temperature for microwave free-free emission of 12 microkelvins at 30 GHz. Smoothing over several pixels allows features as faint as 0.5 rayleigh to be detected.Comment: LATEX, 33 pages, 15 figures. Accepted for publication in PASP, 113, November 2001. Further information at http://amundsen.swarthmore.edu/SHASSA

    Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b

    Get PDF
    Results from the Kepler mission indicate that the occurrence rate of small planets (<3 R⊕) in the habitable zone of nearby low-mass stars may be as high as 80%. Despite this abundance, probing the conditions and atmospheric properties on any habitable-zone planet is extremely difficult and has remained elusive to date. Here, we report the detection of water vapor and the likely presence of liquid and icy water clouds in the atmosphere of the 2.6 R ⊕ habitable-zone planet K2-18b. The simultaneous detection of water vapor and clouds in the mid-atmosphere of K2-18b is particularly intriguing because K2-18b receives virtually the same amount of total insolation from its host star (1368^(+114)_(-107) W m⁻²) as the Earth receives from the Sun (1361 W m⁻²), resulting in the right conditions for water vapor to condense and explain the detected clouds. In this study we observed nine transits of K2-18b using Hubble Space Telescope/WFC3 in order to achieve the necessary sensitivity to detect the water vapor, and we supplement this data set with Spitzer and K2 observations to obtain a broader wavelength coverage. While the thick hydrogen-dominated envelope we detect on K2-18b means that the planet is not a true Earth analog, our observations demonstrate that low-mass habitable-zone planets with the right conditions for liquid water are accessible with state-of-the-art telescopes
    corecore