718 research outputs found

    The cyclo-synchrotron process and particle heating through the absorption of photons

    Full text link
    We propose a new approximation for the cyclo-synchrotron emissivity of a single electron. In the second part of this work, we discuss a simple application for our approximation, and investigate the heating of electrons through the self-absorption process. Finally, we investigate the self-absorbed part of the spectrum produced by a power-law population of electrons. In comparison to earlier approximations, our formula provides a few significant advantages. Integration of the emissivity over the whole frequency range, starting from the proper minimal emitting frequency, gives the correct cooling rate for any energy particle. Further, the spectrum of the emission is well approximated over the whole frequency range, even for relatively low particle energies (beta << 0.1), where most of the power is emitted in the first harmonic. In order to test our continuous approximation, we compare it with a recently derived approximation of the first ten harmonics. Finally, our formula connects relatively smooth to the synchrotron emission at beta=0.9. We show that the self-absorption is a very efficient heating mechanism for low energy particles, independent of the shape of the particle distribution responsible for the self-absorbed synchrotron emission. We find that the energy gains for low energy particles are always higher than energy losses by cyclo-synchrotron emission. We show also that the spectral index of the self-absorbed part of the spectrum at very low frequencies differs significantly from the well known standard relation I(nu) ~ nu^(5/2).Comment: 9 pages, 4 figures, accepted for publication in A&

    Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    Get PDF
    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 using the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly-a and H-a lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We observe broad blueshifted Ly-a, which we attribute to resonant scattering of photons emitted from hotspots on the equatorial ring. We also detect NV~\lambda\lambda 1239,1243 A line emission, but only to the red of Ly-A. The profiles of the NV lines differ markedly from that of H-a, suggesting that the N^{4+} ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.Comment: Science, accepted. Science Express, 02 Sept 2010. 5 figures. Supporting online material can be found at http://www.sciencemag.org/cgi/content/full/sci;science.1192134/DC

    Understanding the effect of curvature on the magnetization reversal of three-dimensional nanohelices

    Full text link
    Comprehending the interaction between geometry and magnetism in three-dimensional (3D) nanostructures is of importance to understand the fundamental physics of domain wall (DW) formation and pinning. Here, we use focused electron beam-induced deposition to fabricate magnetic nanohelices with increasing helical curvature with height. Using electron tomography and Lorentz transmission electron microscopy, we reconstruct the 3D structure and magnetization of the nanohelices. The surface curvature, helical curvature and torsion of the nanohelices are then quantified from the tomographic reconstructions. Furthermore, by using the experimental 3D reconstructions as inputs for micromagnetic simulations we can reveal the influence of surface and helical curvature on the magnetic reversal mechanism. Hence, we can directly correlate the magnetic behavior of a 3D nanohelix to its experimental structure. These results demonstrate how control of geometry in nanohelices can be utilized in the stabilization of DWs and control of the response of the nanostructure to applied magnetic fields

    Chandra Observations of Shock Kinematics in Supernova Remnant 1987A

    Full text link
    We report the first results from deep X-ray observations of the SNR 1987A with the Chandra LETG. Temperatures inferred from line ratios range from 0.1 - 2 keV and increase with ionization potential. Expansion velocities inferred from X-ray line profiles range from 300 - 1700 km/s, much less than the velocities inferred from the radial expansion of the radio and X-ray images. We can account for these observations with a scenario in which the X-rays are emitted by shocks produced where the supernova blast wave strikes dense protrusions of the inner circumstellar ring, which are also responsible for the optical hot spots.Comment: 12 pages, 3 figures, accepted for publication in ApJ

    The chloroplast RNA helicase ISE2 is required for multiple chloroplast RNA processing steps in Arabidopsis thaliana

    Get PDF
    INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is a chloroplast-localized RNA helicase that is indispensable for proper plant development. Chloroplasts in leaves with reduced ISE2expression have previously been shown to exhibit reduced thylakoid contents and increased stromal volume, indicative of defective development. It has recently been reported that ISE2 is required for the splicing of group II introns from chloroplast transcripts. The current study extends these findings, and presents evidence for ISE2’s role in multiple aspects of chloroplast RNA processing beyond group II intron splicing. Loss of ISE2 from Arabidopsis thaliana leaves resulted in defects in C-to-U RNA editing, altered accumulation of chloroplast transcripts and chloroplast-encoded proteins, and defective processing of chloroplast ribosomal RNAs. Potential ISE2 substrates were identified by RNA immunoprecipitation followed by next-generation sequencing (RIP-seq), and the diversity of RNA species identified supports ISE2’s involvement in multiple aspects of chloroplast RNA metabolism. Comprehensive phylogenetic analyses revealed that ISE2 is a non-canonical Ski2-like RNA helicase that represents a separate sub-clade unique to green photosynthetic organisms, consistent with its function as an essential protein. Thus ISE2’s evolutionary conservation may be explained by its numerous roles in regulating chloroplast gene expression

    The effect of response order on candidate viewing behaviour and item difficulty in a multiple-choice listening test

    Get PDF
    Studies from various disciplines have reported that spatial location of options in relation to processing order impacts the ultimate choice of the option. A large number of studies have found a primacy effect, that is, the tendency to prefer the first option. In this paper we report on evidence that position of the key in four-option multiple-choice (MC) listening test items may affect item difficulty and thereby potentially introduce construct-irrelevant variance.Two sets of analyses were undertaken. With Study 1 we explored 30 test takers’ processing via eye-tracking on listening items from the Aptis Test. An unexpected finding concerned the amount of processing undertaken on different response options on the MC questions, given their order. Based on this, in Study 2 we looked at the direct effect of key position on item difficulty in a sample of 200 live Aptis items and around 6000 test takers per item.The results suggest that the spatial location of the key in MC listening tests affects the amount of processing it receives and the item’s difficulty. Given the widespread use of MC tasks in language assessments, these findings seem crucial, particularly for tests that randomize response order. Candidates who by chance have many keys in last position might be significantly disadvantaged

    Three-dimensional distribution of ejecta in Supernova 1987A at 10 000 days

    Get PDF
    Due to its proximity, SN 1987A offers a unique opportunity to directly observe the geometry of a stellar explosion as it unfolds. Here we present spectral and imaging observations of SN 1987A obtained ~10,000 days after the explosion with HST/STIS and VLT/SINFONI at optical and near-infrared wavelengths. These observations allow us to produce the most detailed 3D map of H-alpha to date, the first 3D maps for [Ca II] \lambda \lambda 7292, 7324, [O I] \lambda \lambda 6300, 6364 and Mg II \lambda \lambda 9218, 9244, as well as new maps for [Si I]+[Fe II] 1.644 \mu m and He I 2.058 \mu m. A comparison with previous observations shows that the [Si I]+[Fe II] flux and morphology have not changed significantly during the past ten years, providing evidence that it is powered by 44Ti. The time-evolution of H-alpha shows that it is predominantly powered by X-rays from the ring, in agreement with previous findings. All lines that have sufficient signal show a similar large-scale 3D structure, with a north-south asymmetry that resembles a broken dipole. This structure correlates with early observations of asymmetries, showing that there is a global asymmetry that extends from the inner core to the outer envelope. On smaller scales, the two brightest lines, H-alpha and [Si I]+[Fe II] 1.644 \mu m, show substructures at the level of ~ 200 - 1000 km/s and clear differences in their 3D geometries. We discuss these results in the context of explosion models and the properties of dust in the ejecta.Comment: Accepted for publication in Ap

    Chandra LETG Observations of Supernova Remnant 1987A

    Full text link
    We discuss the results from deep Chandra LETG observations of the supernova remnant 1987A (SNR 1987A). We find that a distribution of shocks, spanning the same range of velocities (from 300 to 1700 km/s) as deduced in the first part of our analysis (Zhekov et al. 2005, ApJL, 628, L127), can account for the entire X-ray spectrum of this object. The post-shock temperature distribution is bimodal, peaking at kT 0.5 and 3 keV. Abundances inferred from the X-ray spectrum have values similar to those for the inner circumstellar ring, except that the abundances of nitrogen and oxygen are approximately a factor of two lower than those inferred from the optical/UV spectrum. The velocity of the X-ray emitting plasma has decreased since 1999, apparently because the blast wave has entered the main body of the inner circumstellar ring.Comment: Accepted for publication in the Ap

    A Failed Gamma-Ray Burst with Dirty Energetic Jets Spirited Away? New Implications for the GRB-SN Connection from Supernova 2002ap

    Full text link
    (Abridged) SN 2002ap is an interesting event with broad spectral features like the famous SN 1998bw / GRB 980425. Here we examine the recently proposed jet hypothesis from SN 2002ap by a spectropolarimetric observation. We show that jets should be moving at about 0.23c with a jet kinetic energy of ~5 x 10^{50} erg, a similar energy scale to the GRB jets. The weak radio emission from SN 2002ap has been used to argue against the jet hypothesis, but we show that this problem can be avoided. However, the jet cannot be kept ionized because of adiabatic cooling without external photoionization or heating source. We found that only the radioactivity of 56Ni is a possible source, indicating that the jet is formed and ejected from central region of the core collapse. Then we point out that the jet will eventually sweep up enough interstellar medium and generate shocks in a few to 10 years, producing strong radio emission that can be spatially resolved, giving us a clear test for the jet hypothesis. Discussions are given on possible implications for the GRB-SN connection in the case that the jet is real. We suggest existence of two distinct classes of GRBs from similar core-collapse events but by completely different mechanisms. Cosmologically distant GRBs (~10^{50} erg) are collimated jets generated by central activity of core collapses. SN 2002ap could be a failed GRB of this type with a large baryon load. On the other hand, much less energetic ones like GRB 980425 are rather isotropic, which may be produced by hydrodynamical shock acceleration at the outer envelope. We propose that the radioactive ionization for the SN 2002ap jet may give a new explanation also for the X-ray line features often observed in GRB afterglows.Comment: 14 pages, 5 figures. Version accepted to Ap
    • …
    corecore