253 research outputs found

    Kinematic Masses of Super Star Clusters in M82 from High-Resolution Near-Infrared Spectroscopy

    Full text link
    Using high-resolution (R~22,000) near-infrared (1.51 -- 1.75 microns) spectra from Keck Observatory, we measure the kinematic masses of two super star clusters in M82. Cross-correlation of the spectra with template spectra of cool evolved stars gives stellar velocity dispersions of sigma_r=15.9 +/- 0.8 km/s for MGG-9 and sigma_r=11.4 +/- 0.8 km/s for MGG-11. The cluster spectra are dominated by the light of red supergiants, and correlate most closely with template supergiants of spectral types M0 and M4.5. We fit King models to the observed profiles of the clusters in archival HST/NICMOS images to measure the half-light radii. Applying the virial theorem, we determine masses of 1.5 +/- 0.3 x 10^6 M_sun for MGG-9 and 3.5 +/- 0.7 x 10^5 M_sun for MGG-11. Population synthesis modelling suggests that MGG-9 is consistent with a standard initial mass function, whereas MGG-11 appears to be deficient in low-mass stars relative to a standard IMF. There is, however, evidence of mass segregation in the clusters, in which case the virial mass estimates would represent lower limits.Comment: 16 pages, 8 figures; ApJ, in pres

    Merging of globular clusters within inner galactic regions. II. The Nuclear Star Cluster formation

    Full text link
    In this paper we present the results of two detailed N-body simulations of the interaction of a sample of four massive globular clusters in the inner region of a triaxial galaxy. A full merging of the clusters takes place, leading to a slowly evolving cluster which is quite similar to observed Nuclear Clusters. Actually, both the density and the velocity dispersion profiles match qualitatively, and quantitatively after scaling, with observed features of many nucleated galaxies. In the case of dense initial clusters, the merger remnant shows a density profile more concentrated than that of the progenitors, with a central density higher than the sum of the central progenitors central densities. These findings support the idea that a massive Nuclear Cluster may have formed in early phases of the mother galaxy evolution and lead to the formation of a nucleus, which, in many galaxies, has indeed a luminosity profile similar to that of an extended King model. A correlation with galactic nuclear activity is suggested.Comment: 18 pages, 10 figures, 3 tables. Submitted to ApJ, main journa

    Gas Accretion by Star Clusters and the Formation of Ultraluminous X-ray Sources from Cusps of Compact Remnants

    Full text link
    Here we show that the overabundance of ultra-luminous, compact X-ray sources (ULXs) associated with moderately young clusters in interacting galaxies such as the Antennae and Cartwheel can be given an alternative explanation that does not involve the presence of intermediate mass black holes (IMBHs). We argue that gas density within these systems is enhanced by the collective potential of the cluster prior to being accreted onto the individual cluster members and, as a result, the aggregate X-ray luminosity arising from the neutron star cluster members can exceed >1039ergs−1>10^{39} {\rm erg s^{-1}}. Various observational tests to distinguish between IMBHs and accreting neutron star cusps are discussed.Comment: 4 pages, 3 figures, accepted to ApJ

    Effect of Acute High-intensity Interval Exercise on Whole-body Fat Oxidation and Subcutaneous Adipose Tissue Cell Signaling in Overweight Women

    Get PDF
    International Journal of Exercise Science 13(2): 554-566, 2020. Exercise-induced alterations in adipose tissue insulin and/or ÎČ-adrenergic signaling may contribute to increases in whole-body fat oxidation following acute exercise. Thus, we examined changes in insulin (Akt, AS160) and ÎČ-adrenergic (PKA) signaling proteins in subcutaneous adipose tissue and whole-body fat oxidation in overweight women following acute high-intensity interval exercise (HIIE). Overweight females completed two experimental sessions in a randomized order: 1) control (bed rest) and 2) HIIE (10 x 4 min running intervals at 90% HRmax, 2-min recovery). Subcutaneous abdominal adipose tissue biopsies were obtained from 10 participants before (pre-), immediately (0hr) after (post-), 2hr post-, and 4hr post-exercise. Plasma glucose and insulin levels were assessed in venous blood samples obtained at each biopsy time-point from a different group of 5 participants (BMI-matched to biopsy group). Fat oxidation rates were estimated using the respiratory exchange ratio (RER) in all participants using indirect calorimetry pre-, 2hr post-, and 4hr post-exercise. RER was decreased (p \u3c 0.05) at 2hr post-exercise after HIIE (0.77 ± 0.04) compared to control (0.84 ± 0.04). Despite higher plasma glucose (p \u3c 0.01) and insulin (p \u3c 0.05) levels at 0hr post-exercise versus control, no significant interaction effects were observed for Akt or AS160 phosphorylation (p \u3e 0.05). Phosphorylation of PKA substrates was unaltered in both conditions (p \u3e 0.05). Collectively, altered ÎČ-adrenergic and insulin signaling in subcutaneous adnominal adipose tissue does not appear to explain increased whole-body fat oxidation following acute HIIE

    The mass-to-light ratio of rich star clusters

    Full text link
    We point out a strong time-evolution of the mass-to-light conversion factor eta commonly used to estimate masses of unresolved star clusters from observed cluster spectro-photometric measures. We present a series of gas-dynamical models coupled with the Cambridge stellar evolution tracks to compute line-of-sight velocity dispersions and half-light radii weighted by the luminosity. We explore a range of initial conditions, varying in turn the cluster mass and/or density, and the stellar population's IMF. We find that eta, and hence the estimated cluster mass, may increase by factors as large as 3 over time-scales of 50 million years. We apply these results to an hypothetic cluster mass distribution function (d.f.) and show that the d.f. shape may be strongly affected at the low-mass end by this effect. Fitting truncated isothermal (Michie-King) models to the projected light profile leads to over-estimates of the concentration parameter c of delta c ~ 0.3 compared to the same functional fit applied to the projected mass density.Comment: 6 pages, 2 figures, to appear in the proceedings of the "Young massive star clusters", Granada, Spain, September 200

    Proper motions of the Arches cluster with Keck-LGS Adaptive Optics: the first kinematic mass measurement of the Arches

    Get PDF
    We report the first detection of the intrinsic velocity dispersion of the Arches cluster - a young (~2 Myr), massive (~10,000 Solar Mass) starburst cluster located near the Galactic center. This was accomplished using proper motion measurements within the central region of the cluster, obtained with the laser guide star adaptive optics system at Keck Observatory over a 3 year time baseline (2006-2009). This uniform dataset results in proper motion measurements that are improved by a factor ~5 over previous measurements from heterogeneous instruments, yielding internal velocity dispersion estimates 0.15 +/- 0.01 mas/yr, which corresponds to 5.4 +/- 0.4 km/s at a distance of 8.4 kpc. Projecting a simple model for the cluster onto the sky to compare with our proper motion dataset, in conjunction with surface density data, we estimate the total present-day mass of the cluster to be 15,000 (+7400 -6000) Solar masses. The mass in stars observed within a cylinder of radius R=0.4 pc is found to be 9000 (+4000 -3500) Solar Masses at formal 3-sigma confidence. This mass measurement is free from assumptions about the mass function of the cluster, and thus may be used to check mass estimates from photometry and simulation. When we conduct this check, we find that the present-day mass function of the Arches cluster is likely either top-heavy or truncated at low-mass, or both. Collateral benefits of our data and analysis include: 1. cluster membership probabilities, which may be used to extract a clean cluster sample for future photometric work; 2. a refined estimate of the bulk motion of the Arches cluster with respect to the field, which we find to be 172 +/- 15 km/s, which is slightly slower than suggested by previous VLT-Keck measurements; and 3. a velocity dispersion estimate for the field itself, which is likely dominated by the inner galactic bulge and the nuclear disk.Comment: 73 pages, 28 figures, 12 tables, ApJ accepte

    KELT-11b: A Highly Inflated Sub-Saturn Exoplanet Transiting the V=8 Subgiant HD 93396

    Full text link
    We report the discovery of a transiting exoplanet, KELT-11b, orbiting the bright (V=8.0V=8.0) subgiant HD 93396. A global analysis of the system shows that the host star is an evolved subgiant star with Teff=5370±51T_{\rm eff} = 5370\pm51 K, M∗=1.438−0.052+0.061M⊙M_{*} = 1.438_{-0.052}^{+0.061} M_{\odot}, R∗=2.72−0.17+0.21R⊙R_{*} = 2.72_{-0.17}^{+0.21} R_{\odot}, log g∗=3.727−0.046+0.040g_*= 3.727_{-0.046}^{+0.040}, and [Fe/H]=0.180±0.075 = 0.180\pm0.075. The planet is a low-mass gas giant in a P=4.736529±0.00006P = 4.736529\pm0.00006 day orbit, with MP=0.195±0.018MJM_{P} = 0.195\pm0.018 M_J, RP=1.37−0.12+0.15RJR_{P}= 1.37_{-0.12}^{+0.15} R_J, ρP=0.093−0.024+0.028\rho_{P} = 0.093_{-0.024}^{+0.028} g cm−3^{-3}, surface gravity log gP=2.407−0.086+0.080{g_{P}} = 2.407_{-0.086}^{+0.080}, and equilibrium temperature Teq=1712−46+51T_{eq} = 1712_{-46}^{+51} K. KELT-11 is the brightest known transiting exoplanet host in the southern hemisphere by more than a magnitude, and is the 6th brightest transit host to date. The planet is one of the most inflated planets known, with an exceptionally large atmospheric scale height (2763 km), and an associated size of the expected atmospheric transmission signal of 5.6%. These attributes make the KELT-11 system a valuable target for follow-up and atmospheric characterization, and it promises to become one of the benchmark systems for the study of inflated exoplanets.Comment: 15 pages, Submitted to AAS Journal

    KELT-20b: A Giant Planet With A Period Of P ~ 3.5 Days Transiting The V ~ 7.6 Early A Star HD 185603

    Get PDF
    We report the discovery of KELT-20b, a hot Jupiter transiting a early A star, HD 185603, with an orbital period of days. Archival and follow-up photometry, Gaia parallax, radial velocities, Doppler tomography, and AO imaging were used to confirm the planetary nature of KELT-20b and characterize the system. From global modeling we infer that KELT-20 is a rapidly rotating ( ) A2V star with an effective temperature of K, mass of , radius of , surface gravity of , and age of . The planetary companion has a radius of , a semimajor axis of au, and a linear ephemeris of . We place a upper limit of on the mass of the planet. Doppler tomographic measurements indicate that the planetary orbit normal is well aligned with the projected spin axis of the star ( ). The inclination of the star is constrained to , implying a three-dimensional spin–orbit alignment of . KELT-20b receives an insolation flux of , implying an equilibrium temperature of of ∌2250 K, assuming zero albedo and complete heat redistribution. Due to the high stellar , KELT-20b also receives an ultraviolet (wavelength nm) insolation flux of , possibly indicating significant atmospheric ablation. Together with WASP-33, Kepler-13 A, HAT-P-57, KELT-17, and KELT-9, KELT-20 is the sixth A star host of a transiting giant planet, and the third-brightest host (in V ) of a transiting planet

    From 10 Kelvin to 10 TeraKelvin: Insights on the Interaction Between Cosmic Rays and Gas in Starbursts

    Full text link
    Recent work has both illuminated and mystified our attempts to understand cosmic rays (CRs) in starburst galaxies. I discuss my new research exploring how CRs interact with the ISM in starbursts. Molecular clouds provide targets for CR protons to produce pionic gamma rays and ionization, but those same losses may shield the cloud interiors. In the densest molecular clouds, gamma rays and Al-26 decay can provide ionization, at rates up to those in Milky Way molecular clouds. I then consider the free-free absorption of low frequency radio emission from starbursts, which I argue arises from many small, discrete H II regions rather than from a "uniform slab" of ionized gas, whereas synchrotron emission arises outside them. Finally, noting that the hot superwind gas phase fills most of the volume of starbursts, I suggest that it has turbulent-driven magnetic fields powered by supernovae, and that this phase is where most synchrotron emission arises. I show how such a scenario could explain the far-infrared radio correlation, in context of my previous work. A big issue is that radio and gamma-ray observations imply CRs also must interact with dense gas. Understanding how this happens requires a more advanced understanding of turbulence and CR propagation.Comment: Conference proceedings for "Cosmic-ray induced phenomenology in star-forming environments: Proceedings of the 2nd Session of the Sant Cugat Forum of Astrophysics" (April 16-19, 2012). 16 pages, 5 figure

    How does a low-mass cut-off in the stellar IMF affect the evolution of young star clusters?

    Get PDF
    We investigate how different stellar initial mass functions (IMFs) can affect the mass-loss and survival of star clusters. We find that IMFs with radically different low-mass cut-offs (between 0.1 and 2 M⊙) do not change cluster destruction time-scales as much as might be expected. Unsurprisingly, we find that clusters with more high-mass stars lose relatively more mass through stellar evolution, but the response to this mass-loss is to expand and hence significantly slow their dynamical evolution. We also argue that it is very difficult, if not impossible, to have clusters with different IMFs that are initially ‘the same’, since the mass, radius and relaxation times depend on each other and on the IMF in a complex way. We conclude that changing the IMF to be biased towards more massive stars does speed up mass-loss and dissolution, but that it is not as dramatic as might be thought
    • 

    corecore