12,074 research outputs found

    Spin-spin Correlation in Some Excited States of Transverse Ising Model

    Full text link
    We consider the transverse Ising model in one dimension with nearest-neighbour interaction and calculate exactly the longitudinal spin-spin correlation for a class of excited states. These states are known to play an important role in the perturbative treatment of one-dimensional transverse Ising model with frustrated second-neighbour interaction. To calculate the correlation, we follow the earlier procedure of Wu, use Szego's theorem and also use Fisher-Hartwig conjecture. The result is that the correlation decays algebraically with distance (nn) as 1/√n1/\surd n and is oscillatory or non-oscillatory depending on the magnitude of the transverse field.Comment: 5 pages, 1 figur

    The energy density of an Ising half plane lattice

    Full text link
    We compute the energy density at arbitrary temperature of the half plane Ising lattice with a boundary magnetic field HbH_b at a distance MM rows from the boundary and compare limiting cases of the exact expression with recent calculations at T=TcT=T_c done by means of discrete complex analysis methods.Comment: 12 pages, 1 figur

    The 1999 Heineman Prize Address- Integrable models in statistical mechanics: The hidden field with unsolved problems

    Full text link
    In the past 30 years there have been extensive discoveries in the theory of integrable statistical mechanical models including the discovery of non-linear differential equations for Ising model correlation functions, the theory of random impurities, level crossing transitions in the chiral Potts model and the use of Rogers-Ramanujan identities to generalize our concepts of Bose/Fermi statistics. Each of these advances has led to the further discovery of major unsolved problems of great mathematical and physical interest. I will here discuss the mathematical advances, the physical insights and extraordinary lack of visibility of this field of physics.Comment: Text of the 1999 Heineman Prize address given March 24 at the Centenial Meeting of the American Physical Society in Atlanta 20 pages in latex, references added and typos correcte

    The anisotropic Ising correlations as elliptic integrals: duality and differential equations

    Full text link
    We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers-Wannier duality to anisotropic correlation functions, and the linear differential equations for these anisotropic correlations. More precisely, we show that the anisotropic correlation functions are homogeneous polynomials of the complete elliptic integrals of the first, second and third kind. We give the exact dual transformation matching the correlation functions and the dual correlation functions. We show that the linear differential operators annihilating the general two-point correlation functions are factorised in a very simple way, in operators of decreasing orders.Comment: 22 page
    • …
    corecore