18 research outputs found
Identifying the Effects of Unprocessed let-7a-1 and let-7a-3 in Non-Small Cell Lung Cancer
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate protein levels typically by interacting with the 3′ untranslated region (3′-UTR) of target messenger RNA (mRNAs) and are often aberrantly expressed in cancer. The let-7 miRNA family members are commonly regarded as cancer suppressors, by down-regulating the expression of oncoproteins such as RAS, HMGA2, and MYC. However, prior work indicates that unprocessed let-7 RNAs may be positively correlated with cancer phenotypes in lung cancer cell lines. Our study aims to identify the effects of unprocessed let-7a-1 and let-7a-3 in non-small cell lung cancer, by transfecting plasmids that express unprocessed let-7a-1 and let-7a-3 into 3 different lung cancer cell lines. We then proceeded to conduct functional assays to measure the differences in anchorage independent growth, cell proliferation, and cell migration in all cell lines transfected with unprocessed let-7, in contrast to cells transfected with a control vector and thus far determined that unprocessed let-7a-1 can enhance anchorage independent growth. Thus, we created truncations of the let-7a-1 miRNA to identify the cis regions of this miRNA that is responsible for the change in phenotype. Our results suggest that cells transfected with truncated, yet unprocessed let-7a-1 have increased anchorage independent growth, a major hallmark of cancer cell. There is still a need to replicate the functional assays that were conducted while continuing to create constructs of both let-7a-1 and let-7a-3 in order to further identify the sequence of the miRNAs responsible for the enhanced cancer phenotypes
Singlet Glycine Riboswitches Bind Ligand as Well as Tandem Riboswitches
The glycine riboswitch often occurs in a tandem architecture, with two ligand-binding domains (aptamers) followed by a single expression platform. Based on previous observations, we hypothesized that singlet versions of the glycine riboswitch, which contain only one aptamer domain, are able to bind glycine if appropriate structural contacts are maintained. An initial alignment of 17 putative singlet riboswitches indicated that the single consensus aptamer domain is flanked by a conserved peripheral stem-loop structure. These singlets were sorted into two subtypes based on whether the active aptamer domain precedes or follows the peripheral stem-loop, and an example of each subtype of singlet riboswitch was characterized biochemically. The singlets possess glycine-binding affinities comparable to those of previously published tandem examples, and the conserved peripheral domains form A-minor interactions with the single aptamer domain that are necessary for ligand-binding activity. Analysis of sequenced genomes identified a significant number of singlet glycine riboswitches. Based on these observations, we propose an expanded model for glycine riboswitch gene control that includes singlet and tandem architectures
An expanded collection and refined consensus model of glmS ribozymes
Self-cleaving glmS ribozymes selectively bind glucosamine-6-phosphate (GlcN6P) and use this metabolite as a cofactor to promote self-cleavage by internal phosphoester transfer. Representatives of the glmS ribozyme class are found in Gram-positive bacteria where they reside in the 5′ untranslated regions (UTRs) of glmS messenger RNAs that code for the essential enzyme L-glutamine:D-fructose-6-phosphate aminotransferase. By using comparative sequence analyses, we have expanded the number of glmS ribozyme representatives from 160 to 463. All but two glmS ribozymes are present in glmS mRNAs and most exhibit striking uniformity in sequence and structure, which are features that make representatives attractive targets for antibacterial drug development. However, our discovery of rare variants broadens the consensus sequence and structure model. For example, in the Deinococcus-Thermus phylum, several structural variants exist that carry additional stems within the catalytic core and changes to the architecture of core-supporting substructures. These findings reveal that glmS ribozymes have a broader phylogenetic distribution than previously known and suggest that additional rare structural variants may remain to be discovered
Structural, Functional, and Taxonomic Diversity of Three PreQ1 Riboswitch Classes
SummaryPreviously, two riboswitch classes have been identified that sense and respond to the hypermodified nucleobase called prequeuosine1 (preQ1). The enormous expansion of available genomic DNA sequence data creates new opportunities to identify additional representatives of the known riboswitch classes and to discover novel classes. We conducted bioinformatics searches on microbial genomic DNA data sets to discover numerous additional examples belonging to the two previously known riboswitch classes for preQ1 (classes preQ1-I and preQ1-II), including some structural variants that further restrict ligand specificity. Additionally, we discovered a third preQ1-binding riboswitch class (preQ1-III) that is structurally distinct from previously known classes. These findings demonstrate that numerous organisms monitor the concentrations of this modified nucleobase by exploiting one or more riboswitch classes for this widespread compound
Secondary Structural Model of Human MALAT1 Reveals Multiple Structure–Function Relationships
Human metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an abundant nuclear-localized long noncoding RNA (lncRNA) that has significant roles in cancer. While the interacting partners and evolutionary sequence conservation of MALAT1 have been examined, much of the structure of MALAT1 is unknown. Here, we propose a hypothetical secondary structural model for 8425 nucleotides of human MALAT1 using three experimental datasets that probed RNA structures in vitro and in various human cell lines. Our model indicates that approximately half of human MALAT1 is structured, forming 194 helices, 13 pseudoknots, five structured tetraloops, nine structured internal loops, and 13 intramolecular long-range interactions that give rise to several multiway junctions. Evolutionary conservation and covariation analyses support 153 of 194 helices in 51 mammalian MALAT1 homologs and 42 of 194 helices in 53 vertebrate MALAT1 homologs, thereby identifying an evolutionarily conserved core that likely has important functional roles in mammals and vertebrates. Data mining revealed that RNA modifications, somatic cancer-associated mutations, and single-nucleotide polymorphisms may induce structural rearrangements that sequester or expose binding sites for several cancer-associated microRNAs. Our findings reveal new mechanistic leads into the roles of MALAT1 by identifying several intriguing structure–function relationships in which the dynamic structure of MALAT1 underlies its biological functions
Secondary Structural Model of MALAT1 Becomes Unstructured in Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer
Long noncoding RNAs (lncRNAs) influence cellular function through binding events that often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancerous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work analyzes how that structural model is expected to change in K562 cells, which originated from a patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost 60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely, MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells. Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the structure of MALAT1 may mediate cancer in a cell-type specific manner